SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grahn Desirée) "

Sökning: WFRF:(Grahn Desirée)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fagerström, Anton, et al. (författare)
  • Large scale bio electro jet fuel production integration at CHP-plant in Östersund, Sweden
  • 2021. - B 2407
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • This document reports the findings of the project “Large scale bio electro jet fuel production integration at CHP-plant in Östersund, Sweden”. BEJF is an electrofuel produced in a synthesis process where biogenic carbon dioxide (CO2) is the main carbon source and hydrogen from electrolysis of water using renewable electricity is the main energy source. The project is a feasibility study for a factory for such fuel located at Jämtkraft's facility for CHP in Östersund. Thus, the aim of the project is to assess the feasibility for producing renewable aviation fuel at a specific location considering and evaluating e.g., different processes, operations and integrations, costs, environmental impact, business models and actors.IVL The Swedish Environmental Research Institute, Jämtkraft (JK), Chalmers University (CU), Lund University (LU), Nordic Initiative for Sustainable Aviation (NISA), and Fly Green Fund (FGF) have been the primary implementers in this project. Other project stakeholders (AFAB, and The Power Region), have provided relevant data to the various working groups. The project has included experimental work, modelling and calculations, as well as literature-based studies but not the construction of any facilities.
  •  
2.
  • Grahn, Desirée, et al. (författare)
  • Förnybar flytande biogas (LBG) till sjöfart i praktiken
  • 2024
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Reducing the environmental and climate impact of shipping propelled by liquefied natural gas (LNG) requires the introduction of alternative fuels such as liquid biogas/biomethane (LBG) (Jivén et al., 2022). Today, only a small part of the biomethane produced in Sweden is liquefied into LBG and an even smaller part is used as fuel for shipping. The price and availability of biogas is governed by supply and demand in an international market where shipping, industry and heavy trucks demand biogas. The biogas then needs to be processed into upgraded biogas (biomethane) or LBG quality in order to be transported and used in the respective sectors inside and outside of Sweden. The trend is for a larger proportion of biogas to be liquefied into LBG. The market has thus gone from a local market, where biogas was produced in the city's wastewater treatment plant and the city buses ran on biogas, to an international market where biogas often is transported in the same way as fossil gas and marketed using the fossil gas together with certificates. The project "Renewable liquid biogas (LBG) for shipping in practice" was carried out by IVL Swedish Environmental Research Institute and RISE in 2023 together with stakeholders from the shipping sector, ports and industry organizations for biogas. The project has studied the conditions required to make LBG available to shipping in practice at Swedish ports. The study shows that the major obstacles to an established use of LBG in the shipping sector in Sweden today are pricing/willingness to pay that is affected by international market prices, lack of suitable logistical solutions as well as the absence of the piece of the puzzle that is the business model and cooperation needed to make available the large volumes of biogas that shipping may demand. The stakeholders in the project estimate their total need of biogas to 3 TWh in a short term, and 10 TWh in a longer term. The project has identified a number of conclusions and recommendations for future work, including that the potential for biogas is large and untapped, but that new solutions for the distribution and logistics of LBG are needed. There is a clear interest from maritime actors as they see biogas as a strategic solution and the dialog between actors in the industry remains important. A change in the tax system could be needed so that more actors can use the green gas principle for LBG. In addition, a functioning "marketplace" is needed, which simplifies for sellers and buyers of LBG, and agreements/contracts are needed that are longterm and to a greater extent based on the costs of producing and providing LBG.
  •  
3.
  • Hansson, Anna, 1984-, et al. (författare)
  • Biogas production in the industrial symbiosis context – facilitating collaboration through digitalization
  • 2024
  • Ingår i: 5THCESUST2024: 5TH SYMPOSIUM ON CIRCULAR ECONOMY AND SUSTAINABILITY.
  • Konferensbidrag (refereegranskat)abstract
    • Improving sustainability performance and adapting to circular economy principles in operational business strategies are becoming increasingly prioritized. In this pursuit, the concept of industrial symbiosis (IS) has become increasingly relevant. IS represents a collaborative approach where the interplay of material, residual waste, energy, and infrastructure exchanges aims to yield not only economic and environmental advantages for the participating companies but also substantial societal benefits by using resources more efficiently. Biogas production is such an example, it can reduce greenhouse gas emissions since it can produce heat and electricity, replace renewable fuel for vehicles, or be used as input material for industrial use. The digestate from biogas production can also be used as an effective agricultural fertilizer to replace chemical fertilizers which are produced using fossil energy.Digital tools and platforms in IS can be used to different extent depending on businesses levels of digital maturity (the extent to which businesses adapt to ongoing digital change and integrate digitalization). Digital tools and platforms hold a central role for developing various advantages in biogas-based IS, but since the digital maturity for IS focusing on biogas production is uncertain, the current efficiency obtained by tools and platforms is unknown. Therefore, through semi-structured interviews and study visits, this study assesses stakeholder collaboration and use of digital tools at five IS sites with biogas production in Sweden. It explores (i) current digital maturity and collaboration characteristics amongst established biogas-based IS, and (ii) needs amongst stakeholders for development of digital tools and platforms to promote digital maturity, monitoring, collaboration, and knowledge exchange in current and future IS structures.Preliminary results of the on-going study show that the use of digital tools varies depending on the character and size of resource flows that are included in the collaboration, and due to the internal digital maturity of the involved companies. In general, the use of digital tools for stakeholder interaction is on low or medium level, in which manual handling is required and little is automated. This complies with the sites being relatively small, and the number of stakeholders involved are relatively few. Moreover, the preliminary results show that the interest of future development of digital tools is found to be related to business development and expanded market opportunities through diversified raw material use, increased production, and new distribution channels. In addition, a demand of digital platforms for exchange of experience and competence supply has been identified.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy