SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gramlich Yvette) "

Sökning: WFRF:(Gramlich Yvette)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bianchi, F., et al. (författare)
  • The SALTENA Experiment : Comprehensive Observations of Aerosol Sources, Formation, and Processes in the South American Andes
  • 2022
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - 0003-0007 .- 1520-0477. ; 103:2, s. E212-E229
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an introduction to the Southern Hemisphere High Altitude Experiment on Particle Nucleation and Growth (SALTENA). This field campaign took place between December 2017 and June 2018 (wet to dry season) at Chacaltaya (CHC), a GAW (Global Atmosphere Watch) station located at 5,240 m MSL in the Bolivian Andes. Concurrent measurements were conducted at two additional sites in El Alto (4,000 m MSL) and La Paz (3,600 m MSL). The overall goal of the campaign was to identify the sources, understand the formation mechanisms and transport, and characterize the properties of aerosol at these stations. State-of-the-art instruments were brought to the station complementing the ongoing permanent GAW measurements, to allow a comprehensive description of the chemical species of anthropogenic and biogenic origin impacting the station and contributing to new particle formation. In this overview we first provide an assessment of the complex meteorology, airmass origin, and boundary layer-free troposphere interactions during the campaign using a 6-month high-resolution Weather Research and Forecasting (WRF) simulation coupled with Flexible Particle dispersion model (FLEXPART). We then show some of the research highlights from the campaign, including (i) chemical transformation processes of anthropogenic pollution while the air masses are transported to the CHC station from the metropolitan area of La Paz-El Alto, (ii) volcanic emissions as an important source of atmospheric sulfur compounds in the region, (iii) the characterization of the compounds involved in new particle formation, and (iv) the identification of long-range-transported compounds from the Pacific or the Amazon basin. We conclude the article with a presentation of future research foci. The SALTENA dataset highlights the importance of comprehensive observations in strategic high-altitude locations, especially the undersampled Southern Hemisphere.
  •  
2.
  • Cai, Jing, et al. (författare)
  • Elucidating the mechanisms of atmospheric new particle formation in the highly polluted Po Valley, Italy
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2423-2441
  • Tidskriftsartikel (refereegranskat)abstract
    • New particle formation (NPF) is a major source of aerosol particles and cloud condensation nuclei in the troposphere, playing an important role in both air quality and climate. Frequent NPF events have been observed in heavily polluted urban environments, contributing to the aerosol number concentration by a significant amount. The Po Valley region in northern Italy has been characterized as a hotspot for high aerosol loadings and frequent NPF events in southern Europe. However, the mechanisms of NPF and growth in this region are not completely understood. In this study, we conducted a continuous 2-month measurement campaign with state-of-the-art instruments to elucidate the NPF and growth mechanisms in northern Italy. Our results demonstrate that frequent NPF events (66% of all days during the measurement campaign) are primarily driven by abundant sulfuric acid (8.5×106cm-3) and basic molecules in this area. In contrast, oxygenated organic molecules from the atmospheric oxidation of volatile organic compounds (VOCs) appear to play a minor role in the initial cluster formation but contribute significantly to the consecutive growth process. Regarding alkaline molecules, amines are insufficient to stabilize all sulfuric acid clusters in the Po Valley. Ion cluster measurements and kinetic models suggest that ammonia (10ppb) must therefore also play a role in the nucleation process. Generally, the high formation rates of sub-2nm particles (87cm-3s-1) and nucleation-mode growth rates (5.1nmh-1) as well as the relatively low condensational sink (8.9×10-3s-1) will result in a high survival probability for newly formed particles, making NPF crucial for the springtime aerosol number budget. Our results also indicate that reducing key pollutants, such as SO2, amine and NH3, could help to substantially decrease the particle number concentrations in the Po Valley region.
  •  
3.
  • Gramlich, Yvette, 1993- (författare)
  • Chemical composition of Arctic aerosols and their link to clouds
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Arctic is a place particularly vulnerable to climate change, warming at an accelerated rate compared to the rest of the Earth. In this remote environment, the atmosphere, the ocean, the ice, and the land are all interlinked and are shaping a very complex system. This is why the interplay between aerosols and clouds and their role in the warming Arctic is still not fully understood.To address this issue, a better understanding of the sources, properties, and fate of aerosol particles in the Arctic is needed. By means of in situ observations of aerosols and clouds at the Zeppelin Observatory on Svalbard, this thesis aims to shed light on aerosol-cloud interactions in the Arctic. These measurements were conducted within the framework of the one-year long Ny-Ålesund Aerosol Cloud Experiment (2019-2020). A special focus of this thesis is on the chemical composition of aerosol particles from a molecular-level perspective, where measurements from a filter inlet for gases and aerosols coupled to a chemical ionization mass spectrometer were used.To identify the properties of the aerosol particles serving as cloud condensation nuclei (CCN) or ice nucleating particles (INP), cloud droplets and ice crystals were sampled with a ground-based counterflow virtual impactor inlet. The measured particles are called cloud residuals. The observations show that the cloud residuals have sizes in the Aitken and accumulation mode (as small as 10 nm in diameter). The chemical composition of these cloud residuals followed largely the expected annual cycle of aerosol particles in the Arctic, suggesting that most of the aerosol particles can act as CCN or INP in the Arctic. Anthropogenic signatures were present in the cloud residuals in the winter and spring, whereas in the summer a large contribution from methanesulfonic acid (MSA) was present, indicating natural source regions.The thesis also investigated how the oxidation products of dimethyl sulfide, MSA, sulfuric acid, and hydroperoxymethyl thioformate (HPMTF) are related to each other in the gaseous and particulate phase. HPMTF was observed to be present mainly in the gas phase, where it followed the gas phase signal of MSA in the summer. However, it was not present in significant amounts in the particle phase. In the presence of clouds, the gas phase levels of HPMTF decreased, indicating the uptake by cloud droplets.Another source of aerosol particles investigated are those from biomass burning (BB) emissions. The BB aerosol showed a largely similar molecular-level chemical composition of the organic aerosol compared to the rest of the year; however, a clear change to a largely organic dominated bulk aerosol composition was observed. Back trajectories suggested mainly Eastern Europe and Siberia as the source regions for the BB events. Using BB tracer compounds in combination with the back trajectories suggested that agricultural fires from Eastern Europe have a larger impact on the Arctic aerosol population, where mass and number enhancements compared to times not influenced by BB were found to reach up to one order of magnitude.The results from this thesis show that aerosol particles from natural emissions are an important source for Arctic aerosol particles. Especially, emissions from marine biological activity are relevant for the growth of aerosol particles to sizes in the CCN active regime in the summer.
  •  
4.
  •  
5.
  • Gramlich, Yvette, 1993-, et al. (författare)
  • Impact of Biomass Burning on Arctic Aerosol Composition
  • 2024
  • Ingår i: ACS Earth and Space Chemistry. - 2472-3452.
  • Tidskriftsartikel (refereegranskat)abstract
    • Emissions from biomass burning (BB) occurring at midlatitudes can reach the Arctic, where they influence the remote aerosol population. By using measurements of levoglucosan and black carbon, we identify seven BB events reaching Svalbard in 2020. We find that most of the BB events are significantly different to the rest of the year (nonevents) for most of the chemical and physical properties. Aerosol mass and number concentrations are enhanced by up to 1 order of magnitude during the BB events. During BB events, the submicrometer aerosol bulk composition changes from an organic- and sulfate-dominated regime to a clearly organic-dominated regime. This results in a significantly lower hygroscopicity parameter κ for BB aerosol (0.4 ± 0.2) compared to nonevents (0.5 ± 0.2), calculated from the nonrefractory aerosol composition. The organic fraction in the BB aerosol showed no significant difference for the O:C ratios (0.9 ± 0.3) compared to the year (0.9 ± 0.6). Accumulation mode particles were present during all BB events, while in the summer an additional Aitken mode was observed, indicating a mixture of the advected air mass with locally produced particles. BB tracers (vanillic, homovanillic, and hydroxybenzoic acid, nitrophenol, methylnitrophenol, and nitrocatechol) were significantly higher when air mass back trajectories passed over active fire regions in Eastern Europe, indicating agricultural and wildfires as sources. Our results suggest that the impact of BB on the Arctic aerosol depends on the season in which they occur, and agricultural and wildfires from Eastern Europe have the potential to disturb the background conditions the most. 
  •  
6.
  • Gramlich, Yvette, et al. (författare)
  • In-situ molecular characterization of Arctic cloud residuals using FIGAERO-CIMS behind a ground-based counterflow virtual impactor
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The role organic aerosols play in Arctic cloud formation is still poorly understood. In this study we address this issue by in-situ observations of cloud residuals at the Zeppelin Observatory in Ny-Ålesund, Svalbard (approx. 480 m a. s. l.) The measurements were part of the one-year long Ny-Ålesund Aerosol and Cloud Experiment 2019-2020 (NASCENT). We deployed a Filter Inlet for Gases and AEROsols coupled to a Chemical Ionization Mass Spectrometer (FIGAERO-CIMS) behind a ground-based counterflow virtual impactor (GCVI) to obtain the chemical composition of cloud residuals at molecular level. Between December 2019 and December 2020, we observed in total 14 cloud events. The compositions of the cloud residuals show a clear signal of methanesulfonic acid in spring, summer and autumn, but not in the winter, suggesting a marine contribution to the aerosol population activating into cloud droplets. In addition, we observe organic compounds in the cloud residuals throughout the entire year, with elevated fractions in summer. The biomass burning tracer levoglucosan was found in the cloud residuals as well, with highest contributions to the cloud residual mass at the end of summer (end of June until mid-September). Inorganic compounds (sulfuric acid and nitric acid) were also detected in the cloud residuals. Sulfuric acid concentrations were especially elevated in two of the cloud residuals (May 21 and September 12, 2020), but followed the overall pattern of the levels of MSA in the cloud residuals during the rest of the year. Overall, the results show the contribution of a marine contribution to the aerosol population able to form clouds in the Arctic environment during the summer months.
  •  
7.
  • Gramlich, Yvette, 1993-, et al. (författare)
  • Revealing the chemical characteristics of Arctic low-level cloud residuals – in situ observations from a mountain site
  • 2023
  • Ingår i: Atmospheric Chemistry And Physics. - 1680-7316 .- 1680-7324. ; 23:12, s. 6813-6834
  • Tidskriftsartikel (refereegranskat)abstract
    • The role aerosol chemical composition plays in Arctic low-level cloud formation is still poorly understood. In this study we address this issue by combining in situ observations of the chemical characteristics of cloud residuals (dried liquid cloud droplets or ice crystals) and aerosol particles from the Zeppelin Observatory in Ny-Ålesund, Svalbard (approx. 480 m a.s.l.). These measurements were part of the 1-year-long Ny-Ålesund Aerosol and Cloud Experiment 2019–2020 (NASCENT). To obtain the chemical composition of cloud residuals at molecular level, we deployed a Filter Inlet for Gases and AEROsols coupled to a Chemical Ionization Mass Spectrometer (FIGAERO-CIMS) with iodide as the reagent ion behind a ground-based counterflow virtual impactor (GCVI). The station was enshrouded in clouds roughly 15 % of the time during NASCENT, out of which we analyzed 14 cloud events between December 2019 and December 2020. During the entire year, the composition of the cloud residuals shows contributions from oxygenated organic compounds, including organonitrates, and traces of the biomass burning tracer levoglucosan. In summer, methanesulfonic acid (MSA), an oxidation product of dimethyl sulfide (DMS), shows large contributions to the sampled mass, indicating marine natural sources of cloud condensation nuclei (CCN) and ice nucleating particle (INP) mass during the sunlit part of the year. In addition, we also find contributions of the inorganic acids nitric acid and sulfuric acid, with outstanding high absolute signals of sulfuric acid in one cloud residual sample in spring and one in late summer (21 May and 12 September 2020), probably caused by high anthropogenic sulfur emissions near the Barents Sea and Kara Sea. During one particular cloud event, on 18 May 2020, the air mass origin did not change before, during, or after the cloud. We therefore chose it as a case study to investigate cloud impact on aerosol physicochemical properties. We show that the overall chemical composition of the organic aerosol particles was similar before, during, and after the cloud, indicating that the particles had already undergone one or several cycles of cloud processing before being measured as residuals at the Zeppelin Observatory and/or that, on the timescales of the observed cloud event, cloud processing of the organic fraction can be neglected. Meanwhile, there were on average fewer particles but relatively more in the accumulation mode after the cloud. Comparing the signals of sulfur-containing compounds of cloud residuals with aerosols during cloud-free conditions, we find that sulfuric acid had a higher relative contribution to the cloud residuals than to aerosols during cloud-free conditions, but we did not observe an increase in particulate MSA due to the cloud. Overall, the chemical composition, especially of the organic fraction of the Arctic cloud residuals, reflected the overall composition of the general aerosol population well. Our results thus suggest that most aerosols can serve as seeds for low-level clouds in the Arctic.
  •  
8.
  • Heitto, Arto, et al. (författare)
  • Analysis of atmospheric particle growth based on vapor concentrations measured at the high-altitude GAW station Chacaltaya in the Bolivian Andes
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24, s. 1315-1328
  • Tidskriftsartikel (refereegranskat)abstract
    • Early growth of atmospheric particles is essential for their survival and ability to participate in cloud formation. Many different atmospheric vapors contribute to the growth, but even the main contributors still remain poorly identified in many environments, such as high-altitude sites. Based on measured organic vapor and sulfuric acid concentrations under ambient conditions, particle growth during new particle formation events was simulated and compared with the measured particle size distribution at the Chacaltaya Global Atmosphere Watch station in Bolivia (5240ma.s.l.) during April and May 2018, as a part of the SALTENA (Southern Hemisphere high-ALTitude Experiment on particle Nucleation and growth) campaign. Despite the challenging topography and ambient conditions around the station, the simple particle growth model used in the study was able to show that the detected vapors were sufficient to explain the observed particle growth, although some discrepancies were found between modeled and measured particle growth rates. This study, one of the first of such studies conducted on high altitude, gives insight on the key factors affecting the particle growth on the site and helps to improve the understanding of important factors on high-altitude sites and the atmosphere in general. Low-volatility organic compounds originating from multiple surrounding sources such as the Amazonia and La Paz metropolitan area were found to be the main contributor to the particle growth, covering on average 65% of the simulated particle mass in particles with a diameter of 30nm. In addition, sulfuric acid made a major contribution to the particle growth, covering at maximum 37% of the simulated particle mass in 30nm particles during periods when volcanic activity was detected on the area, compared to around 1% contribution on days without volcanic activity. This suggests that volcanic emissions can greatly enhance the particle growth.
  •  
9.
  • Huang, Wei, et al. (författare)
  • Variation in chemical composition and volatility of oxygenated organic aerosol in different rural, urban, and mountain environments
  • 2024
  • Ingår i: Atmospheric Chemistry and Physics. - 1680-7316 .- 1680-7324. ; 24:4, s. 2607-2624
  • Tidskriftsartikel (refereegranskat)abstract
    • The apparent volatility of atmospheric organic aerosol (OA) particles is determined by their chemical composition and environmental conditions (e.g., ambient temperature). A quantitative, experimental assessment of volatility and the respective importance of these two factors remains challenging, especially in ambient measurements. We present molecular composition and volatility of oxygenated OA (OOA) particles in different rural, urban, and mountain environments (including Chacaltaya, Bolivia; Alabama, US; Hyytiälä, Finland; Stuttgart and Karlsruhe, Germany; and Delhi, India) based on deployments of a filter inlet for gases and aerosols coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (FIGAERO-CIMS). We find on average larger carbon numbers (nC) and lower oxygen-To-carbon (O:C) ratios at the urban sites (nC: 9.8±0.7; O:C: 0.76±0.03; average ±1 standard deviation) compared to the rural (nC: 8.8±0.6; O:C: 0.80±0.05) and mountain stations (nC: 8.1±0.8; O:C: 0.91±0.07), indicative of different emission sources and chemistry. Compounds containing only carbon, hydrogen, and oxygen atoms (CHO) contribute the most to the total OOA mass at the rural sites (79.9±5.2%), in accordance with their proximity to forested areas (66.2±5.5% at the mountain sites and 72.6±4.3% at the urban sites). The largest contribution of nitrogen-containing compounds (CHON) is found at the urban stations (27.1±4.3%), consistent with their higher NOx levels. Moreover, we parametrize OOA volatility (saturation mass concentrations, Csat) using molecular composition information and compare it with the bulk apparent volatility derived from thermal desorption of the OOA particles within the FIGAERO. We find differences in Csat values of up to 1/43 orders of magnitude and variation in thermal desorption profiles (thermograms) across different locations and systems. From our study, we draw the general conclusion that environmental conditions (e.g., ambient temperature) do not directly affect OOA apparent volatility but rather indirectly by influencing the sources and chemistry of the environment and thus the chemical composition. The comprehensive dataset provides results that show the complex thermodynamics and chemistry of OOA and their changes during its lifetime in the atmosphere. We conclude that generally the chemical description of OOA suffices to predict its apparent volatility, at least qualitatively. Our study thus provides new insights that will help guide choices of, e.g., descriptions of OOA volatility in different model frameworks such as air quality models and cloud parcel models.
  •  
10.
  • Kommula, S. M., et al. (författare)
  • Effect of Long-Range Transported Fire Aerosols on Cloud Condensation Nuclei Concentrations and Cloud Properties at High Latitudes
  • 2024
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 51:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Active vegetation fires in south-eastern (SE) Europe resulted in a notable increase in the number concentration of aerosols and cloud condensation nuclei (CCN) particles at two high latitude locations—the SMEAR IV station in Kuopio, Finland, and the Zeppelin Observatory in Svalbard, high Arctic. During the fire episode aerosol hygroscopicity κ slightly increased at SMEAR IV and at the Zeppelin Observatory κ decreased. Despite increased κ in high CCN conditions at SMEAR IV, the aerosol activation diameter increased due to the decreased supersaturation with an increase in aerosol loading. In addition, at SMEAR IV during the fire episode, in situ measured cloud droplet number concentration (CDNC) increased by a factor of ∼7 as compared to non-fire periods which was in good agreement with the satellite observations (MODIS, Terra). Results from this study show the importance of SE European fires for cloud properties and radiative forcing in high latitudes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy