SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grandori Rita) "

Sökning: WFRF:(Grandori Rita)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allison, Timothy M., et al. (författare)
  • Computational Strategies and Challenges for Using Native Ion Mobility Mass Spectrometry in Biophysics and Structural Biology
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:16, s. 10872-10880
  • Tidskriftsartikel (refereegranskat)abstract
    • Native mass spectrometry (MS) allows the interrogation of structural aspects of macromolecules in the gas phase, under the premise of having initially maintained their solution-phase noncovalent interactions intact. In the more than 25 years since the first reports, the utility of native MS has become well established in the structural biology community. The experimental and technological advances during this time have been rapid, resulting in dramatic increases in sensitivity, mass range, resolution, and complexity of possible experiments. As experimental methods have improved, there have been accompanying developments in computational approaches for analyzing and exploiting the profusion of MS data in a structural and biophysical context. In this perspective, we consider the computational strategies currently being employed by the community, aspects of best practice, and the challenges that remain to be addressed. Our perspective is based on discussions within the European Cooperation in Science and Technology Action on Native Mass Spectrometry and Related Methods for Structural Biology (EU COST Action BM1403), which involved participants from across Europe and North America. It is intended not as an in-depth review but instead to provide an accessible introduction to and overview of the topic—to inform newcomers to the field and stimulate discussions in the community about addressing existing challenges. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05792) focuses on software tools available to help researchers tackle some of the challenges enumerated here.
  •  
2.
  • Allison, Timothy M., et al. (författare)
  • Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data
  • 2020
  • Ingår i: Analytical Chemistry. - : American Chemical Society. - 0003-2700 .- 1520-6882. ; 92:16, s. 10881-10890
  • Tidskriftsartikel (refereegranskat)abstract
    • The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.
  •  
3.
  • Azinas, Stavros, et al. (författare)
  • D-strand perturbation and amyloid propensity in beta-2 microglobulin
  • 2011
  • Ingår i: The FEBS Journal. - : John Wiley & Sons. - 1742-464X .- 1742-4658. ; 278:13, s. 2349-58
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteins hosting main β-sheets adopt specific strategies to avoid intermolecular interactions leading to aggregation and amyloid deposition. Human beta-2 microglobulin (β2m) displays a typical immunoglobulin fold and is known to be amyloidogenic in vivo. Upon severe kidney deficiency, β2m accumulates in the bloodstream, triggering, over the years, pathological deposition of large amyloid aggregates in joints and bones. A β-bulge observed on the edge D β-strand of some β2m crystal structures has been suggested to be crucial in protecting the protein from amyloid aggregation. Conversely, a straight D-strand, observed in different crystal structures of monomeric β2m, could promote amyloid aggregation. More recently, the different conformations observed for the β2m D-strand have been interpreted as the result of intrinsic flexibility, rather than being assigned to a functional protective role against aggregation. To shed light on such contrasting picture, the mutation Asp53→Pro was engineered in β2m, aiming to impair the formation of a regular/straight D-strand. Such a mutant was characterized structurally and biophysically by CD, X-ray crystallography and MS, in addition to an assessment of its amyloid aggregation trends in vitro. The results reported in the present study highlight the conformational plasticity of the edge D-strand, and show that even perturbing the D-strand structure through a Pro residue has only marginal effects on protecting β2m from amyloid aggregation in vitro.
  •  
4.
  • Carey, Jannette, et al. (författare)
  • WrbA bridges bacterial flavodoxins and eukaryotic NAD(P)H: quinone oxidoreductases
  • 2007
  • Ingår i: Protein Science. - : Wiley. - 1469-896X .- 0961-8368. ; 16:10, s. 2301-2305
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of the flavodoxin-like protein WrbA with oxidized FMN bound reveals a close relationship to mammalian NAD(P) H:quinone oxidoreductase, Nqo1. Structural comparison of WrbA, flavodoxin, and Nqo1 indicates how the twisted open-sheet fold of flavodoxins is elaborated to form multimers that extend catalytic function from one-electron transfer between protein partners using FMN to two-electron reduction of xenobiotics using FAD. The structure suggests a novel physiological role for WrbA and Nqo1.
  •  
5.
  • Cartelli, Daniele, et al. (författare)
  • α-Synuclein is a Novel Microtubule Dynamase
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • α-Synuclein is a presynaptic protein associated to Parkinson's disease, which is unstructured when free in the cytoplasm and adopts α helical conformation when bound to vesicles. After decades of intense studies, α-Synuclein physiology is still difficult to clear up due to its interaction with multiple partners and its involvement in a pletora of neuronal functions. Here, we looked at the remarkably neglected interplay between α-Synuclein and microtubules, which potentially impacts on synaptic functionality. In order to identify the mechanisms underlying these actions, we investigated the interaction between purified α-Synuclein and tubulin. We demonstrated that α-Synuclein binds to microtubules and tubulin α2β2 tetramer; the latter interaction inducing the formation of helical segment(s) in the α-Synuclein polypeptide. This structural change seems to enable α-Synuclein to promote microtubule nucleation and to enhance microtubule growth rate and catastrophe frequency, both in vitro and in cell. We also showed that Parkinson's disease-linked α-Synuclein variants do not undergo tubulin-induced folding and cause tubulin aggregation rather than polymerization. Our data enable us to propose α-Synuclein as a novel, foldable, microtubule-dynamase, which influences microtubule organisation through its binding to tubulin and its regulating effects on microtubule nucleation and dynamics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy