SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Granovsky V. S.) "

Sökning: WFRF:(Granovsky V. S.)

  • Resultat 1-10 av 38
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Asmolov, V.G., et al. (författare)
  • Crucible-type core catcher for VVER-1000 reactor
  • 2005
  • Ingår i: Proceedings of the American Nuclear Society - International Congress on Advances in Nuclear Power Plants 2005, ICAPP'05. - : Curran Associates, Inc.. - 9781604236934 ; , s. 1221-1227
  • Konferensbidrag (refereegranskat)abstract
    • For new designs of NPPs with VVER-1000 reactors a crucible-type core catcher has been developed to stabilize and cool down molten corium in the reactor pit. The paper addresses distinguishing features of the concept including the "sacrificial" material and the core catcher design. Main phenomena in the catcher have been analyzed.
  •  
2.
  • Bechta, Sevostian, et al. (författare)
  • Experimental studies of oxidic molten corium-vessel steel interaction
  • 2001
  • Ingår i: Nuclear Engineering and Design. - 0029-5493 .- 1872-759X. ; 210:1-3, s. 193-224
  • Tidskriftsartikel (refereegranskat)abstract
    • The experimental results of molten corium-steel specimen interaction with molten corium on the 'Rasplav-2' test facility are presented. In the experiments, cooled vessel steel specimens positioned on the molten pool bottom and uncooled ones lowered into the molten pool were tested. Interaction processes were studied for different corium compositions, melt superheating and in alternative (inert and air) overlying atmosphere. Hypotheses were put forward explaining the observed phenomena and interaction mechanisms. The studies presented in the paper were aimed at the detection of different corium-steel interaction mechanisms. Therefore certain identified phenomena are more typical of the ex-vessel localization conditions than of the in-vessel corium retention. Primarily, this can be referred to the phenomena of low-temperature molten corium-vessel steel interaction in oxidizing atmosphere.
  •  
3.
  •  
4.
  •  
5.
  • Khabensky, V. B., et al. (författare)
  • Effect of temperature gradient on chemical element partitioning in corium pool during in-vessel retention
  • 2018
  • Ingår i: Nuclear Engineering and Design. - : Elsevier Ltd. - 0029-5493 .- 1872-759X. ; 327, s. 82-91
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents some results of the ISTC (International Science and Technology Center)-financed project ‘Investigation of Corium Melt Interaction with NPP Reactor Vessel Steel’ (METCOR). In the METCOR experiments the metallic phase of a two-liquid system was produced by the interaction between hot suboxidized corium and cooled VVER vessel steel, with the steel being corroded. Models of corrosion mechanisms in the considered conditions are used to systematize data on the limiting temperature of corrosion/(dissolution) of the vessel steel. A considerable influence of thermal gradient conditions is shown, which has to be taken into account in the analysis of molten pool behaviour. 
  •  
6.
  • Sulatsky, A.A., et al. (författare)
  • Molten corium interaction with oxidic sacrificial material of WER core catcher
  • 2005
  • Ingår i: Proceedings of the American Nuclear Society. - 9781604236934 ; , s. 1238-1246
  • Konferensbidrag (refereegranskat)abstract
    • The results of experimental studies on the interaction between the oxidic corium melt containing unoxidized zirconium and sacrificial materials of the VVER core catcher are presented. The phenomena of suboxidized corium interaction with sacrificial material have been determined and appropriate model has been developed.
  •  
7.
  • Bechta, Sevostian, et al. (författare)
  • CORPHAD and METCOR ISTC projects
  • 2005
  • Ingår i: Proceedings of The first European Review Meeting on Severe Accident Research (ERMSAR-2005).
  • Konferensbidrag (refereegranskat)abstract
    • The ongoing CORPHAD Project (Phase Diagrams for Multicomponent SystemsContaining Corium and Products of its Interaction with NPP Materials) started in August2001. The main aim of the project is to experimentally determine the relevantphysicochemical data on phase diagrams of binary, ternary, quaternary and prototypic multicomponent systems, which are important for analysis and modelling of a severe accident (SA)and efficient planning of severe accident management (SAM) measures. The data should bedirectly used for the European NUCLEA database development and validation. The followingsystems are in the focus of the project: (1) UO2 – FeO, (2) ZrO2 – FeO, (3) SiO2– Fe2O3, (4)UO2 – SiO2, (5) UO2 – ZrO2-FeO, (6) UO2 – ZrO2-FeOy, (7) U-O-Fe, (8) Zr-O-Fe, (9) U-OZr, (10) U-Zr-Fe-O, (11) complex corium mixtures.The experimentally determined data of the listed diagrams include: coordinates ofcharacteristic points (eutectics, peritectics and others); liquidus and solidus concentrationcurves; component solubility limits in the solid phase; tie line coordinates and temperatureconcentration regions of the miscibility gap. Different methodologies are used for the phasediagram study. Classical methods of thermal analysis, like DTA and DSC are combined withmethods specifically developed for corium studies.The METCOR project (Investigation of Corium Melt Interaction with NPP ReactorVessel Steel) started in April 1999. The objectives of the project are to qualify and to quantifyphysico-chemical phenomena of corium melt interaction with reactor vessel steel cooled fromthe outside. The variable parameters of the interaction tests are: oxygen potential in thesystem, corium composition, interaction interface temperature and heat flux from corium tosteel. The medium scale tests with corium mass of about 2 kg are carried out by using highfrequency induction heating of the corium melt in a cold crucible.The METCOR & CORPHAD work-packages are performed by Russian partners inclose collaboration with leading European scientific institutes in the area of corium researchas well as with the European nuclear industry.This paper briefly describes the results obtained in both projects and their possibleapplication for SA analysis and SAM. The paper concludes with recommendations for futureresearch activities in the framework of METCOR and CORPHAD projects.
  •  
8.
  • Granovsky, V. S., et al. (författare)
  • Oxidation effect on steel corrosion and thermal loads during corium melt in-vessel retention
  • 2014
  • Ingår i: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 278, s. 310-316
  • Tidskriftsartikel (refereegranskat)abstract
    • During a severe accident with core meltdown, the in-vessel molten core retention is challenged by the vessel steel ablation due to thermal and physicochemical interaction of melt with steel. In accidents with oxidizing atmosphere above the melt surface, a low melting point UO2+x-ZrO2-FeOy corium pool can form. In this case ablation of the RPV steel interacting with the molten corium is a corrosion process. Experiments carried out within the International Scientific and Technology Center's (ISTC) METCOR Project have shown that the corrosion rate can vary and depends on both surface temperature of the RPV steel and oxygen potential of the melt. If the oxygen potential is low, the corrosion rate is controlled by the solid phase diffusion of Fe ions in the corrosion layer. At high oxygen potential and steel surface layer temperature of 1050 degrees C and higher, the corrosion rate intensifies because of corrosion layer liquefaction and liquid phase diffusion of Fe ions. The paper analyzes conditions under which corrosion intensification occurs and can impact on in-vessel melt retention (IVR).
  •  
9.
  • Almyashev, V. I., et al. (författare)
  • Oxidation effects during corium melt in-vessel retention
  • 2016
  • Ingår i: Nuclear Engineering and Design. - : Elsevier. - 0029-5493 .- 1872-759X. ; 305, s. 389-399
  • Tidskriftsartikel (refereegranskat)abstract
    • In the in-vessel corium retention studies conducted on the Rasplav-3 test facility within the ISTC METCOR-P project and OECD MASCA program, experiments were made to investigate transient processes taking place during the oxidation of prototypic molten corium. Qualitative and quantitative data have been produced on the sensitivity of melt oxidation rate to the type of oxidant, melt composition, molten pool surface characteristics. The oxidation rate is a governing factor for additional heat generation and hydrogen release; also for the time of secondary inversion of oxidic and metallic layers of corium molten pool.
  •  
10.
  • Bechta, Sevostian, et al. (författare)
  • Corium phase equilibria based on MASCA, METCOR and CORPHAD results
  • 2008
  • Ingår i: Nuclear Engineering and Design. - : Elsevier BV. - 0029-5493 .- 1872-759X. ; 238:10, s. 2761-2771
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental data on component partitioning between suboxidized corium melt and steel in the invessel melt retention (IVR) conditions are compared. The data are produced within the OECD MASCAprogram and the ISTC CORPHAD project under close-to-isothermal conditions and in the ISTC METCORproject under thermal gradient conditions. Chemical equilibrium in the U–Zr–Fe(Cr,Ni,. . .)–O system isreached in all experiments. In MASCA tests the molten pool formed under inert atmosphere has twoimmiscible liquids, oxygen-enriched (oxidic) and oxygen-depleted (metallic), resulting of the miscibilitygap of the mentioned system. Sub-system data of the U–Zr–Fe(Cr,Ni,. . .)–O phase diagram investigatedwithin the ISTC CORPHAD project are interpreted in relation with the MASCA results. In METCOR teststhe equilibrium is established between oxidic liquid and mushy metallic part of the system. Results ofcomparison are discussed and the implications for IVR noted.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy