SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grasset Olivier) "

Sökning: WFRF:(Grasset Olivier)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tinetti, Giovanna, et al. (författare)
  • The science of EChO
  • 2010
  • Ingår i: Proceedings of the International Astronomical Union. - 1743-9213 .- 1743-9221. ; 6:S276, s. 359-370
  • Tidskriftsartikel (refereegranskat)abstract
    • The science of extra-solar planets is one of the most rapidly changing areas of astrophysics and since 1995 the number of planets known has increased by almost two orders of magnitude. A combination of ground-based surveys and dedicated space missions has resulted in 560-plus planets being detected, and over 1200 that await confirmation. NASA's Kepler mission has opened up the possibility of discovering Earth-like planets in the habitable zone around some of the 100,000 stars it is surveying during its 3 to 4-year lifetime. The new ESA's Gaia mission is expected to discover thousands of new planets around stars within 200 parsecs of the Sun. The key challenge now is moving on from discovery, important though that remains, to characterisation: what are these planets actually like, and why are they as they are In the past ten years, we have learned how to obtain the first spectra of exoplanets using transit transmission and emission spectroscopy. With the high stability of Spitzer, Hubble, and large ground-based telescopes the spectra of bright close-in massive planets can be obtained and species like water vapour, methane, carbon monoxide and dioxide have been detected. With transit science came the first tangible remote sensing of these planetary bodies and so one can start to extrapolate from what has been learnt from Solar System probes to what one might plan to learn about their faraway siblings. As we learn more about the atmospheres, surfaces and near-surfaces of these remote bodies, we will begin to build up a clearer picture of their construction, history and suitability for life. The Exoplanet Characterisation Observatory, EChO, will be the first dedicated mission to investigate the physics and chemistry of Exoplanetary Atmospheres. By characterising spectroscopically more bodies in different environments we will take detailed planetology out of the Solar System and into the Galaxy as a whole. EChO has now been selected by the European Space Agency to be assessed as one of four M3 mission candidates. © International Astronomical Union 2011.
  •  
2.
  • Van Hoolst, Tim, et al. (författare)
  • Geophysical Characterization of the Interiors of Ganymede, Callisto and Europa by ESA's JUpiter ICy moons Explorer
  • 2024
  • Ingår i: Space Science Reviews. - : Springer. - 0038-6308 .- 1572-9672. ; 220:5
  • Forskningsöversikt (refereegranskat)abstract
    • The JUpiter ICy moons Explorer (JUICE) of ESA was launched on 14 April 2023 and will arrive at Jupiter and its moons in July 2031. In this review article, we describe how JUICE will investigate the interior of the three icy Galilean moons, Ganymede, Callisto and Europa, during its Jupiter orbital tour and the final orbital phase around Ganymede. Detailed geophysical observations about the interior of the moons can only be performed from close distances to the moons, and best estimates of signatures of the interior, such as an induced magnetic field, tides and rotation variations, and radar reflections, will be obtained during flybys of the moons with altitudes of about 1000 km or less and during the Ganymede orbital phase at an average altitude of 490 km. The 9-month long orbital phase around Ganymede, the first of its kind around another moon than our Moon, will allow an unprecedented and detailed insight into the moon's interior, from the central regions where a magnetic field is generated to the internal ocean and outer ice shell. Multiple flybys of Callisto will clarify the differences in evolution compared to Ganymede and will provide key constraints on the origin and evolution of the Jupiter system. JUICE will visit Europa only during two close flybys and the geophysical investigations will focus on selected areas of the ice shell. A prime goal of JUICE is the characterisation of the ice shell and ocean of the Galilean moons, and we here specifically emphasise the synergistic aspects of the different geophysical investigations, showing how different instruments will work together to probe the hydrosphere. We also describe how synergies between JUICE instruments will contribute to the assessment of the deep interior of the moons, their internal differentiation, dynamics and evolution. In situ measurements and remote sensing observations will support the geophysical instruments to achieve these goals, but will also, together with subsurface radar sounding, provide information about tectonics, potential plumes, and the composition of the surface, which will help understanding the composition of the interior, the structure of the ice shell, and exchange processes between ocean, ice and surface. Accurate tracking of the JUICE spacecraft all along the mission will strongly improve our knowledge of the changing orbital motions of the moons and will provide additional insight into the dissipative processes in the Jupiter system. Finally, we present an overview of how the geophysical investigations will be performed and describe the operational synergies and challenges.
  •  
3.
  •  
4.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
5.
  • 2021
  • swepub:Mat__t
  •  
6.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
7.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy