SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gratier P.) "

Sökning: WFRF:(Gratier P.)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dubernet, M. L., et al. (författare)
  • The virtual atomic and molecular data centre (VAMDC) consortium
  • 2016
  • Ingår i: Journal of Physics B. - : IOP Publishing. - 0953-4075 .- 1361-6455. ; 49:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium is a worldwide consortium which federates atomic and molecular databases through an e-science infrastructure and an organisation to support this activity. About 90% of the inter-connected databases handle data that are used for the interpretation of astronomical spectra and for modelling in many fields of astrophysics. Recently the VAMDC Consortium has connected databases from the radiation damage and the plasma communities, as well as promoting the publication of data from Indian institutes. This paper describes how the VAMDC Consortium is organised for the optimal distribution of atomic and molecular data for scientific research. It is noted that the VAMDC Consortium strongly advocates that authors of research papers using data cite the original experimental and theoretical papers as well as the relevant databases.
  •  
2.
  • Gratier, P., et al. (författare)
  • Molecular and atomic gas in the Local Group galaxy M 33
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 522:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-resolution large-scale observations of the molecular and atomic gas in the Local Group galaxy M 33. The observations were carried out using the HEterodyne Receiver Array (HERA) at the 30 m IRAM telescope in the CO(2-1) line, achieving a resolution of 12 '' x 2.6 km s(-1), enabling individual giant molecular clouds (GMCs) to be resolved. The observed region is 650 square arcminutes mainly along the major axis and out to a radius of 8.5 kpc, and covers entirely the 2' x 40' radial strip observed with the HIFI and PACS Spectrometers as part of the HERM33ES Herschel key program. The achieved sensitivity in main-beam temperature is 20-50 mK at 2.6 km s(-1) velocity resolution. The CO(2-1) luminosity of the observed region is 1.7 +/- 0.1 x 10(7) K km s(-1) pc(2) and is estimated to be 2.8 +/- 0.3 x 10(7) K km s(-1) pc(2) for the entire galaxy, corresponding to H-2 masses of 1.9 x 10(8) M-circle dot and 3.3 x 10(8) M-circle dot respectively (including He), calculated with N(H-2)/ICO(1-0) twice the Galactic value due to the half-solar metallicity of M 33. The HI 21 cm VLA archive observations were reduced, and the mosaic was imaged and cleaned using the multi-scale task in the CASA software package, yielding a series of datacubes with resolutions ranging from 5 '' to 25 ''. The HI mass within a radius of 8.5 kpc is estimated to be 1.4 x 10(9) M-circle dot. The azimuthally averaged CO surface brightness decreases exponentially with a scale length of 1.9 +/- 0.1 kpc whereas the atomic gas surface density is constant at Sigma(HI) = 6 +/- 2 M-circle dot pc(-2) deprojected to face-on. For an N(H-2)/ICO(1-0) conversion factor twice that of the Milky Way, the central kiloparsec H-2 surface density is Sigma(H2) = 8.5 +/- 0.2 M-circle dot pc(-2). The star formation rate per unit molecular gas (SF efficiency, the rate of transformation of molecular gas into stars), as traced by the ratio of CO to H-alpha and FIR brightness, is constant with radius. The SFE, with a N(H-2)/ICO(1-0) factor twice galactic, appears 2-4 times greater than for large spiral galaxies. A morphological comparison of molecular and atomic gas with tracers of star formation is presented showing good agreement between these maps both in terms of peaks and holes. A few exceptions are noted. Several spectra, including those of a molecular cloud situated more than 8 kpc from the galaxy center, are presented.
  •  
3.
  • Kramer, C., et al. (författare)
  • PACS and SPIRE photometer maps of M33: First results of the HERschel M33 Extended Survey (HERM33ES)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L67
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Within the framework of the HERM33ES key program, we are studying the star forming interstellar medium in the nearby, metal-poor spiral galaxy M33, exploiting the high resolution and sensitivity of Herschel. Aims. We use PACS and SPIRE maps at 100, 160, 250, 350, and 500 mu m wavelength, to study the variation of the spectral energy distributions (SEDs) with galacto-centric distance. Methods. Detailed SED modeling is performed using azimuthally averaged fluxes in elliptical rings of 2 kpc width, out to 8 kpc galacto-centric distance. Simple isothermal and two-component grey body models, with fixed dust emissivity index, are fitted to the SEDs between 24 mu m and 500 mu m using also MIPS/Spitzer data, to derive first estimates of the dust physical conditions. Results. The far-infrared and submillimeter maps reveal the branched, knotted spiral structure of M33. An underlying diffuse disk is seen in all SPIRE maps (250-500 mu m). Two component fits to the SEDs agree better than isothermal models with the observed, total and radially averaged flux densities. The two component model, with beta fixed at 1.5, best fits the global and the radial SEDs. The cold dust component clearly dominates; the relative mass of the warm component is less than 0.3% for all the fits. The temperature of the warm component is not well constrained and is found to be about 60 K +/- 10 K. The temperature of the cold component drops significantly from similar to 24 K in the inner 2 kpc radius to 13 K beyond 6 kpc radial distance, for the best fitting model. The gas-to-dust ratio for beta = 1.5, averaged over the galaxy, is higher than the solar value by a factor of 1.5 and is roughly in agreement with the subsolar metallicity of M33.
  •  
4.
  • Albert, Damien, et al. (författare)
  • A Decade with VAMDC : Results and Ambitions
  • 2020
  • Ingår i: Atoms. - : MDPI. - 2218-2004. ; 8:4
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper presents an overview of the current status of the Virtual Atomic and Molecular Data Centre (VAMDC) e-infrastructure, including the current status of the VAMDC-connected (or to be connected) databases, updates on the latest technological development within the infrastructure and a presentation of some application tools that make use of the VAMDC e-infrastructure. We analyse the past 10 years of VAMDC development and operation, and assess their impact both on the field of atomic and molecular (A&M) physics itself and on heterogeneous data management in international cooperation. The highly sophisticated VAMDC infrastructure and the related databases developed over this long term make them a perfect resource of sustainable data for future applications in many fields of research. However, we also discuss the current limitations that prevent VAMDC from becoming the main publishing platform and the main source of A&M data for user communities, and present possible solutions under investigation by the consortium. Several user application examples are presented, illustrating the benefits of VAMDC in current research applications, which often need the A&M data from more than one database. Finally, we present our vision for the future of VAMDC.
  •  
5.
  • Braine, J., et al. (författare)
  • Cool gas and dust in M33: Results from the HERschel M33 Extended Survey (HERM33ES)
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L69
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of the first space-based far-IR-submm observations of M33, which measure the emission from the cool dust and resolve the giant molecular cloud complexes. With roughly half-solar abundances, M33 is a first step towards young low-metallicity galaxies where the submm may be able to provide an alternative to CO mapping to measure their H-2 content. In this Letter, we measure the dust emission cross-section sigma using SPIRE and recent CO and HI observations; a variation in s is present from a near-solar neighborhood cross-section to about half-solar with the maximum being south of the nucleus. Calculating the total H column density from the measured dust temperature and cross-section, and then subtracting the HI column, yields a morphology similar to that observed in CO. The H-2/HI mass ratio decreases from about unity to well below 10% and is about 15% averaged over the optical disk. The single most important observation to reduce the potentially large systematic errors is to complete the CO mapping of M33.
  •  
6.
  • Buchbender, C., et al. (författare)
  • Dense gas in M 33 (HerM33es)
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 549, s. 17-36
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to better understand the emission of molecular tracers of the diffuse and dense gas in giant molecular clouds and the influence that metallicity, optical extinction, density, far-UV field, and star formation rate have on these tracers.Methods. Using the IRAM 30 m telescope, we detected HCN, HCO+, 12CO, and 13CO in six GMCs along the major axis of M 33 at a resolution of ~114 pc and out to a radial distance of 3.4 kpc. Optical, far-infrared, and submillimeter data from Herschel and other observatories complement these observations. To interpret the observed molecular line emission, we created two grids of models of photon-dominated regions, one for solar and one for M 33-type subsolar metallicity.Results. The observed HCO+/HCN line ratios range between 1.1 and 2.5. Similarly high ratios have been observed in the Large Magellanic Cloud. The HCN/CO ratio varies between 0.4% and 2.9% in the disk of M 33. The 12CO/13CO line ratio varies between 9 and 15 similar to variations found in the diffuse gas and the centers of GMCs of the Milky Way. Stacking of all spectra allowed HNC and C2H to be detected. The resulting HCO+/HNC and HCN/HNC ratios of ~8 and 6, respectively, lie at the high end of ratios observed in a large set of (ultra-)luminous infrared galaxies. HCN abundances are lower in the subsolar metallicity PDR models, while HCO+ abundances are enhanced. For HCN this effect is more pronounced at low optical extinctions. The observed HCO+/HCN and HCN/CO line ratios are naturally explained by subsolar PDR models of low optical extinctions between 4 and 10 mag and of moderate densities of n 3 × 103–3 × 104 cm-3, while the FUV field strength only has a small effect on the modeled line ratios. The line ratios are almost equally well reproduced by the solar-metallicity models, indicating that variations in metallicity only play a minor role in influencing these line ratios.
  •  
7.
  • Fuente, A., et al. (författare)
  • Gas phase Elemental abundances in Molecular cloudS (GEMS) I. The prototypical dark cloud TMC 1
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 624
  • Tidskriftsartikel (refereegranskat)abstract
    • GEMS is an IRAM 30 m Large Program whose aim is determining the elemental depletions and the ionization fraction in a set of prototypical star-forming regions. This paper presents the first results from the prototypical dark cloud Taurus molecular cloud (TMC) 1. Extensive millimeter observations have been carried out with the IRAM 30 m telescope (3 and 2mm) and the 40 m Yebes telescope (1.3 cm and 7 mm) to determine the fractional abundances of CO, HCO+, HCN, CS, SO, HCS+, and N2H+ in three cuts which intersect the dense filament at the well-known positions TMC 1-CP, TMC 1-NH3, and TMC 1-C, covering a visual extinction range from A(v) similar to 3 to similar to 20 mag. Two phases with differentiated chemistry can be distinguished: (i) the translucent envelope with molecular hydrogen densities of 1-5 x 10(3) cm(-3); and (ii) the dense phase, located at A(v) > 10 mag, with molecular hydrogen densities >10(4) cm(-3). Observations and modeling show that the gas phase abundances of C and O progressively decrease along the C+/C/CO transition zone (A(v) similar to 3 mag) where C/H similar to 8 x 10(-5) and C/O similar to 0.8-1, until the beginning of the dense phase at A(v) similar to 10 mag. This is consistent with the grain temperatures being below the CO evaporation temperature in this region. In the case of sulfur, a strong depletion should occur before the translucent phase where we estimate an S/H similar to (0.4-2.2) x 10(-6), an abundance similar to 7-40 times lower than the solar value. A second strong depletion must be present during the formation of the thick icy mantles to achieve the values of S/H measured in the dense cold cores (S/H similar to 8 x 10(-8)). Based on our chemical modeling, we constrain the value of zeta(H2) to similar to(0.5-1.8) x 10(-16) s(-1) in the translucent cloud.
  •  
8.
  • Kramer, C., et al. (författare)
  • Gas and dust cooling along the major axis of M33 (HerM33es) ISO/LWS C II observations
  • 2013
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 553
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We aim to better understand the heating of gas by observing the prominent gas cooling line [C II] at 158 mu m in the low-metallicity environment of the Local Group spiral galaxy M33 on scales of 280 pc. In particular, we describe the variation of the photoelectric heating efficiency with the galactic environment.Methods. In this study, we present [C II] observations along the major axis of M33 using the Infrared Space Observatory in combination with Herschel continuum maps, IRAM 30m CO 2-1, and VLA H I data to study the variation in velocity integrated intensities. The ratio of [C II] emission over the far-infrared continuum is used as a proxy for the heating efficiency, and models of photon-dominated regions are used to study the local physical densities, far-ultraviolet radiation fields, and average column densities of the molecular clouds.Results. The heating efficiency stays constant at 0.8% in the inner 4.5 kpc radius of the galaxy, where it increases to reach values of similar to 3% in the outskirts at about a 6 kpc radial distance. The rise of efficiency is explained in the framework of PDR models by lowered volume densities and FUV fields for optical extinctions of only a few magnitudes at constant metallicity. For the significant fraction of Hi emission stemming from PDRs and for typical pressures found in the Galactic cold neutral medium (CNM) traced by Hi emission, the CNM contributes similar to 15% to the observed [C II] emission in the inner 2 kpc radius of M33. The CNM contribution remains largely undetermined in the south, while positions between radial distances of 2 and 7.3 kpc in the north of M33 show a contribution of similar to 40% +/- 20%.
  •  
9.
  • Mookerjea, B., et al. (författare)
  • The Herschel M 33 extended survey (HerM33es): PACS spectroscopy of the star-forming region BCLMP 302
  • 2011
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 532, s. art. no. A152-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The emission line of [CII] at 158 mu m is one of the strongest cooling lines of the interstellar medium (ISM) in galaxies. Aims. Distinguishing the relative contributions of the different ISM phases to [CII] emission is a major objective of the HerM33es program, a Herschel key project to study the ISM in the nearby spiral galaxy M 33. Methods. Using PACS, we have mapped the emission of [CII] 158 mu m, [OI] 63 mu m, and other FIR lines in a 2' x 2' region of the northern spiral arm of M 33, centered on the HII region BCLMP302. At the peak of Ha emission, we observed in addition a velocity-resolved [CII] spectrum using HIFI. We use scatterplots to compare these data with PACS 160 mu m continuum maps, and with maps of CO and HI data, at a common resolution of 12 '' or 50 pc. Maps of Ha and 24 mu m emission observed with Spitzer are used to estimate the SFR. We created maps of the [CII] and [OI] 63 mu m emission and detected [NII] 122 mu m and [NIII] 57 mu m at individual positions. Results. The [CII] line observed with HIFI is significantly broader than that of CO, and slightly blue-shifted. In addition, there is little spatial correlation between [CII] observed with PACS and CO over the mapped region. There is even less spatial correlation between [CII] and the atomic gas traced by HI. Detailed comparison of the observed intensities towards the HII region with models of photo-ionization and photon-dominated regions, confirms that a significant fraction, 20-30%, of the observed [CII] emission stems from the ionized gas and not from the molecular cloud. The gas heating efficiency, using the ratio of [CII] to the TIR as a proxy, varies between 0.07 and 1.5%, with the largest variations found outside the HII region.
  •  
10.
  • Einig, Lucas, et al. (författare)
  • Deep learning denoising by dimension reduction: Application to the ORION-B line cubes
  • 2023
  • Ingår i: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 677
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The availability of large bandwidth receivers for millimeter radio telescopes allows for the acquisition of position-position-frequency data cubes over a wide field of view and a broad frequency coverage. These cubes contain a lot of information on the physical, chemical, and kinematical properties of the emitting gas. However, their large size coupled with an inhomogenous signal-to-noise ratio (S/N) are major challenges for consistent analysis and interpretation. Aims. We searched for a denoising method of the low S/N regions of the studied data cubes that would allow the low S/N emission to be recovered without distorting the signals with a high S/N. Methods. We performed an in-depth data analysis of the 13CO and C17O (1-0) data cubes obtained as part of the ORION-B large program performed at the IRAM 30 m telescope. We analyzed the statistical properties of the noise and the evolution of the correlation of the signal in a given frequency channel with that of the adjacent channels. This has allowed us to propose significant improvements of typical autoassociative neural networks, often used to denoise hyperspectral Earth remote sensing data. Applying this method to the 13CO (1-0) cube, we were able to compare the denoised data with those derived with the multiple Gaussian fitting algorithm ROHSA, considered as the state-of-the-art procedure for data line cubes. Results. The nature of astronomical spectral data cubes is distinct from that of the hyperspectral data usually studied in the Earth remote sensing literature because the observed intensities become statistically independent beyond a short channel separation. This lack of redundancy in data has led us to adapt the method, notably by taking into account the sparsity of the signal along the spectral axis. The application of the proposed algorithm leads to an increase in the S/N in voxels with a weak signal, while preserving the spectral shape of the data in high S/N voxels. Conclusions. The proposed algorithm that combines a detailed analysis of the noise statistics with an innovative autoencoder architecture is a promising path to denoise radio-astronomy line data cubes. In the future, exploring whether a better use of the spatial correlations of the noise may further improve the denoising performances seems to be a promising avenue. In addition, dealing with the multiplicative noise associated with the calibration uncertainty at high S/N would also be beneficial for such large data cubes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy