SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gratz Regina) "

Sökning: WFRF:(Gratz Regina)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bizjak, Tinkara, et al. (författare)
  • Presence and activity of nitrogen-fixing bacteria in Scots pine needles in a boreal forest : a nitrogen-addition experiment
  • 2023
  • Ingår i: Tree Physiology. - : Oxford University Press. - 0829-318X .- 1758-4469. ; 43:8, s. 1354-1364
  • Tidskriftsartikel (refereegranskat)abstract
    • Endophytic nitrogen-fixing bacteria have been detected and isolated from the needles of conifer trees growing in North American boreal forests. Because boreal forests are nutrient-limited, these bacteria could provide an important source of nitrogen for tree species. This study aimed to determine their presence and activity in a Scandinavian boreal forest, using immunodetection of nitrogenase enzyme subunits and acetylene-reduction assays of native Scots pine (Pinus sylvestris L.) needles. The presence and rate of nitrogen fixation by endophytic bacteria were compared between control plots and fertilized plots in a nitrogen-addition experiment. In contrast to the expectation that nitrogen-fixation rates would decline in fertilized plots, as seen, for instance, with nitrogen-fixing bacteria associated with bryophytes, there was no difference in the presence or activity of nitrogen-fixing bacteria between the two treatments. The extrapolated calculated rate of nitrogen fixation relevant for the forest stand was 20 g N ha-1 year-1, which is rather low compared with Scots pine annual nitrogen use but could be important for the nitrogen-poor forest in the long term. In addition, of 13 colonies of potential nitrogen-fixing bacteria isolated from the needles on nitrogen-free media, 10 showed in vitro nitrogen fixation. In summary, 16S rRNA sequencing identified the species as belonging to the genera Bacillus, Variovorax, Novosphingobium, Sphingomonas, Microbacterium and Priestia, which was confirmed by Illumina whole-genome sequencing. Our results confirm the presence of endophytic nitrogen-fixing bacteria in Scots pine needles and suggest that they could be important for the long-term nitrogen budget of the Scandinavian boreal forest.
  •  
2.
  • Chandra, Abel, et al. (författare)
  • Transformer-based deep learning for predicting protein properties in the life sciences
  • 2023
  • Ingår i: eLIFE. - : eLife Sciences Publications. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent developments in deep learning, coupled with an increasing number of sequenced proteins, have led to a breakthrough in life science applications, in particular in protein property prediction. There is hope that deep learning can close the gap between the number of sequenced proteins and proteins with known properties based on lab experiments. Language models from the field of natural language processing have gained popularity for protein property predictions and have led to a new computational revolution in biology, where old prediction results are being improved regularly. Such models can learn useful multipurpose representations of proteins from large open repositories of protein sequences and can be used, for instance, to predict protein properties. The field of natural language processing is growing quickly because of developments in a class of models based on a particular model - the Transformer model. We review recent developments and the use of large-scale Transformer models in applications for predicting protein characteristics and how such models can be used to predict, for example, post-translational modifications. We review shortcomings of other deep learning models and explain how the Transformer models have quickly proven to be a very promising way to unravel information hidden in the sequences of amino acids.
  •  
3.
  • Gratz, Regina (författare)
  • Fe acquisition at the crossroad of calcium and reactive oxygen species signaling
  • 2021
  • Ingår i: Current Opinion in Plant Biology. - : Elsevier BV. - 1369-5266 .- 1879-0356. ; 63
  • Forskningsöversikt (refereegranskat)abstract
    • Due to its redox properties, iron is both essential and toxic. Therefore, soil iron availability variations pose a significant problem for plants. Recent evidence suggests that calcium and reactive oxygen species coordinate signaling events related to soil iron acquisition. Calcium was found to affect directly IRT1-mediated iron import through the lipid-binding protein EHB1 and to trigger a CBL-CIPK-mediated signaling influencing the activity of the key iron-acquisition transcription factor FIT. In parallel, under prolonged iron deficiency, reactive oxygen species both inhibit FIT function and depend on FIT through the function of the catalase CAT2. We discuss the role of calcium and reactive oxygen species signaling in iron acquisition, with post-translational mechanisms influencing the localization and activity of iron-acquisition regulators and effectors.
  •  
4.
  • Gratz, Regina, et al. (författare)
  • Organic nitrogen nutrition: LHT1.2 protein from hybrid aspen (Populus tremula L. x tremuloides Michx) is a functional amino acid transporter and a homolog of Arabidopsis LHT1
  • 2021
  • Ingår i: Tree Physiology. - : Oxford University Press (OUP). - 0829-318X .- 1758-4469. ; 41, s. 1479–1496-
  • Tidskriftsartikel (refereegranskat)abstract
    • The contribution of amino acids (AAs) to soil nitrogen (N) fluxes is higher than previously thought. The fact that AA uptake is pivotal for N nutrition in boreal ecosystems highlights plant AA transporters as key components of the N cycle. At the same time, very little is known about AA transport and respective transporters in trees. Tree genomes may contain 13 or more genes encoding the lysine histidine transporter (LHT) family proteins, and this complicates the study of their significance for tree N-use efficiency. With the strategy of obtaining a tool to study N-use efficiency, our aim was to identify and characterize a relevant AA transporter in hybrid aspen (Populus tremula L. x tremuloides Michx.). We identified PtrLHT1.2, the closest homolog of Arabidopsis thaliana (L.) Heynh AtLHT1, which is expressed in leaves, stems and roots. Complementation of a yeast AA uptake mutant verified the function of PtrLHT1.2 as an AA transporter. Furthermore, PtrLHT1.2 was able to fully complement the phenotypes of the Arabidopsis AA uptake mutant lht1 aap5, including early leaf senescence-like phenotype, reduced growth, decreased plant N levels and reduced root AA uptake. Amino acid uptake studies finally showed that PtrLHT1.2 is a high affinity transporter for neutral and acidic AAs. Thus, we identified a functional AtLHT1 homolog in hybrid aspen, which harbors the potential to enhance overall plant N levels and hence increase biomass production. This finding provides a valuable tool for N nutrition studies in trees and opens new avenues to optimizing tree N-use efficiency.
  •  
5.
  • Tunnermann, Laura, et al. (författare)
  • To have or not to have: expression of amino acid transporters during pathogen infection
  • 2022
  • Ingår i: Plant Molecular Biology. - : Springer Science and Business Media LLC. - 0167-4412 .- 1573-5028. ; 109, s. 413-425
  • Forskningsöversikt (refereegranskat)abstract
    • The interaction between plants and plant pathogens can have significant effects on ecosystem performance. For their growth and development, both bionts rely on amino acids. While amino acids are key transport forms of nitrogen and can be directly absorbed from the soil through specific root amino acid transporters, various pathogenic microbes can invade plant tissues to feed on different plant amino acid pools. In parallel, plants may initiate an immune response program to restrict this invasion, employing various amino acid transporters to modify the amino acid pool at the site of pathogen attack. The interaction between pathogens and plants is sophisticated and responses are dynamic. Both avail themselves of multiple tools to increase their chance of survival. In this review, we highlight the role of amino acid transporters during pathogen infection. Having control over the expression of those transporters can be decisive for the fate of both bionts but the underlying mechanism that regulates the expression of amino acid transporters is not understood to date. We provide an overview of the regulation of a variety of amino acid transporters, depending on interaction with biotrophic, hemibiotrophic or necrotrophic pathogens. In addition, we aim to highlight the interplay of different physiological processes on amino acid transporter regulation during pathogen attack and chose the LYSINE HISTIDINE TRANSPORTER1 (LHT1) as an example.
  •  
6.
  • Tunnermann, Laura, et al. (författare)
  • Transformer-based deep learning for predicting protein properties in the life sciences
  • 2023
  • Ingår i: eLife. - 2050-084X. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • Recent developments in deep learning, coupled with an increasing number of sequenced proteins, have led to a breakthrough in life science applications, in particular in protein property prediction. There is hope that deep learning can close the gap between the number of sequenced proteins and proteins with known properties based on lab experiments. Language models from the field of natural language processing have gained popularity for protein property predictions and have led to a new computational revolution in biology, where old prediction results are being improved regularly. Such models can learn useful multipurpose representations of proteins from large open repositories of protein sequences and can be used, for instance, to predict protein properties. The field of natural language processing is growing quickly because of developments in a class of models based on a particular model-the Transformer model. We review recent developments and the use of large-scale Transformer models in applications for predicting protein characteristics and how such models can be used to predict, for example, post-translational modifications. We review shortcomings of other deep learning models and explain how the Transformer models have quickly proven to be a very promising way to unravel information hidden in the sequences of amino acids.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy