SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Grau Armin) "

Search: WFRF:(Grau Armin)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Debette, Stéphanie, et al. (author)
  • Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection
  • 2015
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 47, s. 78-83
  • Journal article (peer-reviewed)abstract
    • Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year)1. Minor cervical traumas, infection, migraine and hypertension are putative risk factors1–3, and inverse associations with obesity and hypercholesterolemia are described3,4. No confirmed genetic susceptibility factors have been identified using candidate gene approaches5. We performed genome-wide association studies (GWAS) in 1 1,393 CeAD cases and 1 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69–0.82; P = 4.46 × 1 10−10), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 1 × 1 10−3; combined P = 1 1.00 × 1 10−1111). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction6–9. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions.
  •  
2.
  • Giorgio, Elisa, et al. (author)
  • Analysis of LMNB1 Duplications in Autosomal Dominant Leukodystrophy Provides Insights into Duplication Mechanisms and Allele-Specific Expression
  • 2013
  • In: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 34:8, s. 1160-1171
  • Journal article (peer-reviewed)abstract
    • Autosomal dominant leukodystrophy (ADLD) is an adult onset demyelinating disorder that is caused by duplications of the lamin B1 (LMNB1) gene. However, as only a few cases have been analyzed in detail, the mechanisms underlying LMNB1 duplications are unclear. We report the detailed molecular analysis of the largest collection of ADLD families studied, to date. We have identified the minimal duplicated region necessary for the disease, defined all the duplication junctions at the nucleotide level and identified the first inverted LMNB1 duplication. We have demonstrated that the duplications are not recurrent; patients with identical duplications share the same haplotype, likely inherited from a common founder and that the duplications originated from intrachromosomal events. The duplication junction sequences indicated that nonhomologous end joining or replication-based mechanisms such fork stalling and template switching or microhomology-mediated break induced repair are likely to be involved. LMNB1 expression was increased in patients' fibroblasts both at mRNA and protein levels and the three LMNB1 alleles in ADLD patients show equal expression, suggesting that regulatory regions are maintained within the rearranged segment. These results have allowed us to elucidate duplication mechanisms and provide insights into allele-specific LMNB1 expression levels.
  •  
3.
  • Pfeiffer, Dorothea, et al. (author)
  • Genetic Imbalance Is Associated With Functional Outcome After Ischemic Stroke
  • 2019
  • In: Stroke. - 1524-4628. ; 50:2, s. 298-304
  • Journal article (peer-reviewed)abstract
    • Background and Purpose- We sought to explore the effect of genetic imbalance on functional outcome after ischemic stroke (IS). Methods- Copy number variation was identified in high-density single-nucleotide polymorphism microarray data of IS patients from the CADISP (Cervical Artery Dissection and Ischemic Stroke Patients) and SiGN (Stroke Genetics Network)/GISCOME (Genetics of Ischaemic Stroke Functional Outcome) networks. Genetic imbalance, defined as total number of protein-coding genes affected by copy number variations in an individual, was compared between patients with favorable (modified Rankin Scale score of 0-2) and unfavorable (modified Rankin Scale score of ≥3) outcome after 3 months. Subgroup analyses were confined to patients with imbalance affecting ohnologs-a class of dose-sensitive genes, or to those with imbalance not affecting ohnologs. The association of imbalance with outcome was analyzed by logistic regression analysis, adjusted for age, sex, stroke subtype, stroke severity, and ancestry. Results- The study sample comprised 816 CADISP patients (age 44.2±10.3 years) and 2498 SiGN/GISCOME patients (age 67.7±14.2 years). Outcome was unfavorable in 122 CADISP and 889 SiGN/GISCOME patients. Multivariate logistic regression analysis revealed that increased genetic imbalance was associated with less favorable outcome in both samples (CADISP: P=0.0007; odds ratio=0.89; 95% CI, 0.82-0.95 and SiGN/GISCOME: P=0.0036; odds ratio=0.94; 95% CI, 0.91-0.98). The association was independent of age, sex, stroke severity on admission, stroke subtype, and ancestry. On subgroup analysis, imbalance affecting ohnologs was associated with outcome (CADISP: odds ratio=0.88; 95% CI, 0.80-0.95 and SiGN/GISCOME: odds ratio=0.93; 95% CI, 0.89-0.98) whereas imbalance without ohnologs lacked such an association. Conclusions- Increased genetic imbalance was associated with poorer functional outcome after IS in both study populations. Subgroup analysis revealed that this association was driven by presence of ohnologs in the respective copy number variations, suggesting a causal role of the deleterious effects of genetic imbalance.
  •  
4.
  • Putaala, Jukka, et al. (author)
  • Searching for Explanations for Cryptogenic Stroke in the Young : Revealing the Triggers, Causes, and Outcome (SECRETO): Rationale and design
  • 2017
  • In: European Stroke Journal. - : SAGE Publications. - 2396-9873 .- 2396-9881. ; 2:2, s. 116-125
  • Journal article (peer-reviewed)abstract
    • Background: Worldwide, about 1.3 million annual ischaemic strokes (IS) occur in adults aged <50 years. Of these early-onset strokes, up to 50% can be regarded as cryptogenic or associated with conditions with poorly documented causality like patent foramen ovale and coagulopathies. Key hypotheses/aims: (1) Investigate transient triggers and clinical/sub-clinical chronic risk factors associated with cryptogenic IS in the young; (2) use cardiac imaging methods exceeding state-of-the-art to reveal novel sources for embolism; (3) search for covert thrombosis and haemostasis abnormalities; (4) discover new disease pathways using next-generation sequencing and RNA gene expression studies; (5) determine patient prognosis by use of phenotypic and genetic data; and (6) adapt systems medicine approach to investigate complex risk-factor interactions. Design: Searching for Explanations for Cryptogenic Stroke in the Young: Revealing the Etiology, Triggers, and Outcome (SECRETO; NCT01934725) is a prospective multi-centre case–control study enrolling patients aged 18–49 years hospitalised due to first-ever imaging-proven IS of undetermined etiology. Patients are examined according to a standardised protocol and followed up for 10 years. Patients are 1:1 age- and sex-matched to stroke-free controls. Key study elements include centralised reading of echocardiography, electrocardiography, and neurovascular imaging, as well as blood samples for genetic, gene-expression, thrombosis and haemostasis and biomarker analysis. We aim to have 600 patient–control pairs enrolled by the end of 2018. Summary: SECRETO is aiming to establish novel mechanisms and prognosis of cryptogenic IS in the young and will provide new directions for therapy development for these patients. First results are anticipated in 2019.
  •  
5.
  • Skripcak, Tomas, et al. (author)
  • Creating a data exchange strategy for radiotherapy research : Towards federated databases and anonymised public datasets
  • 2014
  • In: Radiotherapy and Oncology. - : Elsevier BV. - 0167-8140 .- 1879-0887. ; 113:3, s. 303-309
  • Journal article (peer-reviewed)abstract
    • Disconnected cancer research data management and lack of information exchange about planned and ongoing research are complicating the utilisation of internationally collected medical information for improving cancer patient care. Rapidly collecting/pooling data can accelerate 'translational research in radiation therapy and oncology. The exchange of study data is one of the fundamental principles behind data aggregation and data mining. The possibilities of reproducing the original study results, performing further analyses on existing research data to generate new hypotheses or developing computational models to support medical decisions (e.g. risk/benefit analysis of treatment options) represent just a fraction of the potential benefits of medical data-pooling. Distributed machine learning and knowledge exchange from federated databases can be considered as one beyond other attractive approaches for knowledge generation within "Big Data". Data interoperability between research institutions should be the major concern behind a wider collaboration. Information captured in electronic patient records (EPRs) and study case report forms (eCRFs), linked together with medical imaging and treatment planning data, are deemed to be fundamental elements for large multi-centre studies in the field of radiation therapy and oncology. To fully utilise the captured medical information, the study data have to be more than just an electronic version of a traditional (un-modifiable) paper CRF. Challenges that have to be addressed are data interoperability, utilisation of standards, data quality and privacy concerns, data ownership, rights to publish, data pooling architecture and storage. This paper discusses a framework for conceptual packages of ideas focused on a strategic development for international research data exchange in the field of radiation therapy and oncology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view