SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grauholm Jonas) "

Sökning: WFRF:(Grauholm Jonas)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Laisk, Triin, et al. (författare)
  • The genetic architecture of sporadic and multiple consecutive miscarriage.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Miscarriage is a common, complex trait affecting ~15% of clinically confirmed pregnancies. Here we present the results of large-scale genetic association analyses with 69,054 cases from five different ancestries for sporadic miscarriage, 750 cases of European ancestry for multiple (≥3) consecutive miscarriage, and up to 359,469 female controls. We identify one genome-wide significant association (rs146350366, minor allele frequency (MAF) 1.2%, P=3.2 × 10-8, odds ratio (OR)=1.4) for sporadic miscarriage in our European ancestry meta-analysis and three genome-wide significant associations for multiple consecutive miscarriage (rs7859844, MAF=6.4%, P=1.3 × 10-8, OR=1.7; rs143445068, MAF=0.8%, P=5.2 × 10-9, OR=3.4; rs183453668, MAF=0.5%, P=2.8 × 10-8, OR=3.8). We further investigate the genetic architecture of miscarriage with biobank-scale Mendelian randomization, heritability, and genetic correlation analyses. Our results show that miscarriage etiopathogenesis is partly driven by genetic variation potentially related to placental biology, and illustrate the utility of large-scale biobank data for understanding this pregnancy complication.
  •  
2.
  • Beaumont, Robin N, et al. (författare)
  • Genome-wide association study of placental weight identifies distinct and shared genetic influences between placental and fetal growth.
  • 2023
  • Ingår i: Nature genetics. - 1546-1718 .- 1061-4036. ; 55:11, s. 1807-19
  • Tidskriftsartikel (refereegranskat)abstract
    • A well-functioning placenta is essential for fetal and maternal health throughout pregnancy. Using placental weight as a proxy for placental growth, we report genome-wide association analyses in the fetal (n=65,405), maternal (n=61,228) and paternal (n=52,392) genomes, yielding 40 independent association signals. Twenty-six signals are classified as fetal, four maternal and three fetal and maternal. A maternal parent-of-origin effect is seen near KCNQ1. Genetic correlation and colocalization analyses reveal overlap with birth weight genetics, but 12 loci are classified as predominantly or only affecting placental weight, with connections to placental development and morphology, and transport of antibodies and amino acids. Mendelian randomization analyses indicate that fetal genetically mediated higher placental weight is causally associated with preeclampsia risk and shorter gestational duration. Moreover, these analyses support the role of fetal insulin in regulating placental weight, providing a key link between fetal and placental growth.
  •  
3.
  • Dahlin, Anna M., 1979-, et al. (författare)
  • A genome-wide association study on medulloblastoma
  • 2020
  • Ingår i: Journal of Neuro-Oncology. - : Springer. - 0167-594X .- 1573-7373. ; 147:2, s. 309-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Medulloblastoma is a malignant embryonal tumor of the cerebellum that occurs predominantly in children. To find germline genetic variants associated with medulloblastoma risk, we conducted a genome-wide association study (GWAS) including 244 medulloblastoma cases and 247 control subjects from Sweden and Denmark.Methods: Genotyping was performed using Illumina BeadChips, and untyped variants were imputed using IMPUTE2.Results: Fifty-nine variants in 11 loci were associated with increased medulloblastoma risk (p < 1 × 10–5), but none were statistically significant after adjusting for multiple testing (p < 5 × 10–8). Thirteen of these variants were genotyped, whereas 46 were imputed. Genotyped variants were further investigated in a validation study comprising 249 medulloblastoma cases and 629 control subjects. In the validation study, rs78021424 (18p11.23, PTPRM) was associated with medulloblastoma risk with OR in the same direction as in the discovery cohort (ORT = 1.59, pvalidation = 0.02). We also selected seven medulloblastoma predisposition genes for investigation using a candidate gene approach: APC, BRCA2, PALB2, PTCH1, SUFU, TP53, and GPR161. The strongest evidence for association was found for rs201458864 (PALB2, ORT = 3.76, p = 3.2 × 10–4) and rs79036813 (PTCH1, ORA = 0.42, p = 2.6 × 10–3).Conclusion: The results of this study, including a novel potential medulloblastoma risk loci at 18p11.23, are suggestive but need further validation in independent cohorts.
  •  
4.
  • Dahlin, Anna M., 1979-, et al. (författare)
  • Genetic Variants in the 9p21.3 Locus Associated with Glioma Risk in Children, Adolescents, and Young Adults : A Case-Control Study
  • 2019
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 28:7, s. 1252-1258
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Genome-wide association studies have identified germline genetic variants in 25 genetic loci that increase the risk of developing glioma in adulthood. It is not known if these variants increase the risk of developing glioma in children and adolescents and young adults (AYA). To date, no studies have performed genome-wide analyses to find novel genetic variants associated with glioma risk in children and AYA.Methods: We investigated the association between 8,831,628 genetic variants and risk of glioma in 854 patients diagnosed up to the age of 29 years and 3,689 controls from Sweden and Denmark. Recruitment of patients and controls was population based. Genotyping was performed using Illumina BeadChips, and untyped variants were imputed with IMPUTE2. We selected 41 established adult glioma risk variants for detailed investigation.Results: Three adult glioma risk variants, rs634537, rs2157719, and rs145929329, all mapping to the 9p21.3 (CDKN2B-AS1) locus, were associated with glioma risk in children and AYA. The strongest association was seen for rs634537 (odds ratioG = 1.21; 95% confidence interval = 1.09–1.35; P = 5.8 × 10−4). In genome-wide analysis, an association with risk was suggested for 129 genetic variants (P <1 × 10−5).Conclusions: Carriers of risk alleles in the 9p21.3 locus have an increased risk of glioma throughout life. The results from genome-wide association analyses require validation in independent cohorts.Impact: Our findings line up with existing evidence that some, although not all, established adult glioma risk variants are associated with risk of glioma in children and AYA. Validation of results from genome-wide analyses may reveal novel susceptibility loci for glioma in children and AYA.
  •  
5.
  • Fadista, João, et al. (författare)
  • Genetic regulation of spermine oxidase activity and cancer risk : a Mendelian randomization study
  • 2021
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Spermine oxidase (SMOX) catalyzes the oxidation of spermine to spermidine. Observational studies have reported SMOX as a source of reactive oxygen species associated with cancer, implying that inhibition of SMOX could be a target for chemoprevention. Here we test causality of SMOX levels with cancer risk using a Mendelian randomization analysis. We performed a GWAS of spermidine/spermine ratio to identify genetic variants associated with regulation of SMOX activity. Replication analysis was performed in two datasets of SMOX gene expression. We then did a Mendelian randomization analysis by testing the association between the SMOX genetic instrument and neuroblastoma, gastric, lung, breast, prostate, and colorectal cancers using GWAS summary statistics. GWAS of spermidine/spermine ratio identified SMOX locus (P = 1.34 × 10–49) explaining 32% of the variance. The lead SNP rs1741315 was also associated with SMOX gene expression in newborns (P = 8.48 × 10–28) and adults (P = 2.748 × 10–8) explaining 37% and 6% of the variance, respectively. Genetically determined SMOX activity was not associated with neuroblastoma, gastric, lung, breast, prostate nor colorectal cancer (P > 0.05). A PheWAS of rs1741315 did not reveal any relevant associations. Common genetic variation in the SMOX gene was strongly associated with SMOX activity in newborns, and less strongly in adults. Genetic down-regulation of SMOX was not significantly associated with lower odds of neuroblastoma, gastric, lung, breast, prostate and colorectal cancer. These results may inform studies of SMOX inhibition as a target for chemoprevention.
  •  
6.
  • Fadista, João, et al. (författare)
  • Genome-wide association study of Hirschsprung disease detects a novel low-frequency variant at the RET locus.
  • 2018
  • Ingår i: European Journal of Human Genetics. - : Springer Science and Business Media LLC. - 1018-4813 .- 1476-5438. ; 26:4, s. 561-569
  • Tidskriftsartikel (refereegranskat)abstract
    • ; 322 cases and 4893 controls). The conditional signal was, however, not replicated in two HSCR cohorts from USA and Finland, leading to the hypothesis that rs144432435 tags a rare haplotype present in Denmark and Sweden. Using the genome-wide complex trait analysis method, we estimated the SNP heritability of HSCR to be 88%, close to estimates based on classical family studies. Moreover, by using Lasso (least absolute shrinkage and selection operator) regression we were able to construct a genetic HSCR predictor with a area under the receiver operator characteristics curve of 76% in an independent validation set. In conclusion, we combined the largest collection of sporadic Hirschsprung cases to date (586 cases) to further elucidate HSCR's genetic architecture.
  •  
7.
  • Fadista, João, et al. (författare)
  • Genome-wide meta-analysis identifies BARX1 and EML4-MTA3 as new loci associated with infantile hypertrophic pyloric stenosis.
  • 2019
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 28:2, s. 332-340
  • Tidskriftsartikel (refereegranskat)abstract
    • Infantile hypertrophic pyloric stenosis (IHPS) is a disorder of young infants with a population incidence of ∼2/1000 live births, caused by hypertrophy of the pyloric sphincter smooth muscle. Reported genetic loci associated with IHPS explain only a minor proportion of IHPS risk. To identify new risk loci, we carried out a genome-wide meta-analysis on 1395 surgery-confirmed cases and 4438 controls, with replication in a set of 2427 cases and 2524 controls. We identified and replicated six independent genomic loci associated with IHPS risk at genome wide significance (P < 5 × 10-8), including novel associations with two single nucleotide polymorphisms (SNPs). One of these SNPs, rs6736913 [odds ratio (OR) = 2.32; P = 3.0 × 10-15], is a low frequency missense variant in EML4 at 2p21. The second SNP, rs1933683 (OR = 1.34; P = 3.1 × 10-9) is 1 kb downstream of BARX1 at 9q22.32, an essential gene for stomach formation in embryogenesis. Using the genome-wide complex trait analysis method, we estimated the IHPS SNP heritability to be 30%, and using the linkage disequilibrium score regression method, we found support for a previously reported genetic correlation of IHPS with lipid metabolism. By combining the largest collection of IHPS cases to date (3822 cases), with results generalized across populations of different ancestry, we elucidate novel mechanistic avenues of IHPS disease architecture.
  •  
8.
  • Foss-Skiftesvik, Jon, et al. (författare)
  • Multi-ancestry genome-wide association study of 4069 children with glioma identifies 9p21.3 risk locus
  • 2023
  • Ingår i: Neuro-Oncology. - : Oxford University Press. - 1522-8517 .- 1523-5866. ; 25:9, s. 1709-1720
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Although recent sequencing studies have revealed that 10% of childhood gliomas are caused by rare germline mutations, the role of common variants is undetermined and no genome-wide significant risk loci for pediatric central nervous system tumors have been identified to date.METHODS: Meta-analysis of 3 population-based genome-wide association studies comprising 4069 children with glioma and 8778 controls of multiple genetic ancestries. Replication was performed in a separate case-control cohort. Quantitative trait loci analyses and a transcriptome-wide association study were conducted to assess possible links with brain tissue expression across 18 628 genes.RESULTS: Common variants in CDKN2B-AS1 at 9p21.3 were significantly associated with astrocytoma, the most common subtype of glioma in children (rs573687, P-value of 6.974e-10, OR 1.273, 95% CI 1.179-1.374). The association was driven by low-grade astrocytoma (P-value of 3.815e-9) and exhibited unidirectional effects across all 6 genetic ancestries. For glioma overall, the association approached genome-wide significance (rs3731239, P-value of 5.411e-8), while no significant association was observed for high-grade tumors. Predicted decreased brain tissue expression of CDKN2B was significantly associated with astrocytoma (P-value of 8.090e-8).CONCLUSIONS: In this population-based genome-wide association study meta-analysis, we identify and replicate 9p21.3 (CDKN2B-AS1) as a risk locus for childhood astrocytoma, thereby establishing the first genome-wide significant evidence of common variant predisposition in pediatric neuro-oncology. We furthermore provide a functional basis for the association by showing a possible link to decreased brain tissue CDKN2B expression and substantiate that genetic susceptibility differs between low- and high-grade astrocytoma.
  •  
9.
  • Lona-Durazo, Frida, et al. (författare)
  • Meta-analysis of GWA studies provides new insights on the genetic architecture of skin pigmentation in recently admixed populations
  • 2019
  • Ingår i: BMC Genetics. - : BMC. - 1471-2156. ; 20
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Association studies in recently admixed populations are extremely useful to identify the genetic architecture of pigmentation, due to their high genotypic and phenotypic variation. However, to date only four Genome-Wide Association Studies (GWAS) have been carried out in these populations.Results: We present a GWAS of skin pigmentation in an admixed sample from Cuba (N=762). Additionally, we conducted a meta-analysis including the Cuban sample, and admixed samples from Cape Verde, Puerto Rico and African-Americans from San Francisco. This meta-analysis is one of the largest efforts so far to characterize the genetic basis of skin pigmentation in admixed populations (N=2,104). We identified five genome-wide significant regions in the meta-analysis, and explored if the markers observed in these regions are associated with the expression of relevant pigmentary genes in human melanocyte cultures. In three of the regions identified in the meta-analysis (SLC24A5, SLC45A2, and GRM5/TYR), the association seems to be driven by non-synonymous variants (rs1426654, rs16891982, and rs1042602, respectively). The rs16891982 polymorphism is strongly associated with the expression of the SLC45A2 gene. In the GRM5/TYR region, in addition to the rs1042602 non-synonymous SNP located on the TYR gene, variants located in the nearby GRM5 gene have an independent effect on pigmentation, possibly through regulation of gene expression of the TYR gene. We also replicated an association recently described near the MFSD12 gene on chromosome 19 (lead variant rs112332856). Additionally, our analyses support the presence of multiple signals in the OCA2/HERC2/APBA2 region on chromosome 15. A clear causal candidate is the HERC2 intronic variant rs12913832, which has a profound influence on OCA2 expression. This variant has pleiotropic effects on eye, hair, and skin pigmentation. However, conditional and haplotype-based analyses indicate the presence of other variants with independent effects on melanin levels in OCA2 and APBA2. Finally, a follow-up of genome-wide signals identified in a recent GWAS for tanning response indicates that there is a substantial overlap in the genetic factors influencing skin pigmentation and tanning response.Conclusions: Our meta-analysis of skin pigmentation GWAS in recently admixed populations provides new insights about the genetic architecture of this complex trait.
  •  
10.
  • Martin, Joanna, et al. (författare)
  • A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder
  • 2018
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 83:12, s. 1044-1053
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is two to seven times more common in male individuals than in female individuals. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk in female cases.METHODS: We analyzed genome-wide autosomal common variants from the Psychiatric Genomics Consortium and iPSYCH Project (n = 20,183 cases, n = 35,191 controls) and Swedish population register data (n = 77,905 cases, n = 1,874,637 population controls).RESULTS: Genetic correlation analyses using two methods suggested near complete sharing of common variant effects across sexes, with r(g) estimates close to 1. Analyses of population data, however, indicated that female individuals with ADHD may be at especially high risk for certain comorbid developmental conditions (i.e., autism spectrum disorder and congenital malformations), potentially indicating some clinical and etiological heterogeneity. Polygenic risk score analysis did not support a higher burden of ADHD common risk variants in female cases (odds ratio [confidence interval] = 1.02 [0.98-1.06], p = .28). In contrast, epidemiological sibling analyses revealed that the siblings of female individuals with ADHD are at higher familial risk for ADHD than the siblings of affected male individuals (odds ratio [confidence interval] = 1.14 [1.11-1.18], p = 1.5E-15).CONCLUSIONS: Overall, this study supports a greater familial burden of risk in female individuals with ADHD and some clinical and etiological heterogeneity, based on epidemiological analyses. However, molecular genetic analyses suggest that autosomal common variants largely do not explain the sex bias in ADHD prevalence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy