SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Greber Thomas) "

Sökning: WFRF:(Greber Thomas)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
2.
  • Muntwiler, Matthias, et al. (författare)
  • Surface science at the PEARL beamline of the Swiss Light Source
  • 2017
  • Ingår i: Journal of Synchrotron Radiation. - 0909-0495. ; 24:1, s. 354-366
  • Tidskriftsartikel (refereegranskat)abstract
    • The Photo-Emission and Atomic Resolution Laboratory (PEARL) is a new soft X-ray beamline and surface science laboratory at the Swiss Light Source. PEARL is dedicated to the structural characterization of local bonding geometry at surfaces and interfaces of novel materials, in particular of molecular adsorbates, nanostructured surfaces, and surfaces of complex materials. The main experimental techniques are soft X-ray photoelectron spectroscopy, photoelectron diffraction, and scanning tunneling microscopy (STM). Photoelectron diffraction in angle-scanned mode measures bonding angles of atoms near the emitter atom, and thus allows the orientation of small molecules on a substrate to be determined. In energy scanned mode it measures the distance between the emitter and neighboring atoms; for example, between adsorbate and substrate. STM provides complementary, real-space information, and is particularly useful for comparing the sample quality with reference measurements. In this article, the key features and measured performance data of the beamline and the experimental station are presented. As scientific examples, the adsorbate-substrate distance in hexagonal boron nitride on Ni(111), surface quantum well states in a metal-organic network of dicyano-anthracene on Cu(111), and circular dichroism in the photoelectron diffraction of Cu(111) are discussed.
  •  
3.
  • Dreiser, Jan, et al. (författare)
  • The Metallofullerene Field-Induced Single-Ion Magnet HoSc2N@C-80
  • 2014
  • Ingår i: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 20:42, s. 13536-13540
  • Tidskriftsartikel (refereegranskat)abstract
    • The low-temperature magnetic properties of the endohedral metallofullerene HoSc2N@C-80 have been studied by superconducting quantum interference device (SQUID) magnetometry. Alternating current (ac) susceptibility measurements reveal that this molecule exhibits slow relaxation of magnetization in a small applied field with timescales in the order of milliseconds. The equilibrium magnetic properties of HoSc2N@C-80 indicate strong magnetic anisotropy. The large differences in magnetization relaxation times between the present compound and the previously investigated DySc2N@C-80 are discussed.
  •  
4.
  • Dreiser, Jan, et al. (författare)
  • X-ray induced demagnetization of single-molecule magnets
  • 2014
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 105:3, s. 032411-
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-temperature x-ray magnetic circular dichroism measurements on the endohedral single-molecule magnet DySc2N@C-80 at the Dy M-4,M-5 edges reveal a shrinking of the opening of the observed hysteresis with increasing x-ray flux. Time-dependent measurements show that the exposure of the molecules to x-rays resonant with the Dy M-5 edge accelerates the relaxation of magnetization more than off-resonant x-rays. The results cannot be explained by a homogeneous temperature rise due to x-ray absorption. Moreover, the observed large demagnetization cross sections indicate that the resonant absorption of one x-ray photon induces the demagnetization of many molecules.
  •  
5.
  •  
6.
  • Kostanyan, Aram, et al. (författare)
  • Gadolinium as an accelerator for reaching thermal equilibrium and its influence on the ground state of Dy2GdN@ C80 single-molecule magnets
  • 2021
  • Ingår i: Physical Review B. - 2469-9950. ; 103:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Endohedral fullerenes are perfect nanolaboratories for the study of magnetism. The substitution of a diamagnetic scandium atom in Dy2ScN@C80 with gadolinium decreases the stability of a given magnetization and demonstrates Gd to act as a single atom catalyst that accelerates the reaching of thermal equilibrium. X-ray magnetic circular dichroism at the M4,5 edges of Gd and Dy shows that Gd affects the ground state. The Gd magnetic moment follows the sum of the external and the dipolar magnetic field of the two Dy ions and compared to Dy2ScN@C80 a lower exchange barrier is found between the ferromagnetic and the antiferromagnetic Dy configuration. The Arrhenius equilibration barrier as obtained from superconducting quantum interference device magnetometry is more than one order of magnitude larger, though a much smaller prefactor imposes the faster equilibration in Dy2GdN@C80. This sheds light on the importance of angular momentum balance and symmetry in magnetic relaxation.
  •  
7.
  • Kostanyan, Aram, et al. (författare)
  • Sub-Kelvin hysteresis of the dilanthanide single-molecule magnet Tb2ScN@ C80
  • 2020
  • Ingår i: Physical Review B. - 2469-9950. ; 101:13
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetic hysteresis is a direct manifestation of nonequilibrium physics that has to be understood if a system is to be used for information storage and processing. The dilanthanide endofullerene Tb2ScN@C80 is shown to be a single-molecule magnet with a remanence time on the order of 100 s at 400 mK. Three different temperature-dependent relaxation barriers are discerned. The lowest 1 K barrier is assigned to intermolecular dipole-dipole interaction, the 10 K barrier to intramolecular exchange and dipolar coupling, and the 50 K barrier to molecular vibrations as was observed for Dy2ScN@C80. The 4 orders of magnitude difference in the prefactor between the Tb and the Dy compound in the decay process across the 10 K barrier is assigned to the lack of Kramers protection in Tb3+. The sub-Kelvin hysteresis follows changes in the magnetization at level crossings of the four possible Tb2 ground-state configurations. Comparison to a hysteresis model, with magnetic relaxation at level crossings only, reveals cooperative action between nearby molecules.
  •  
8.
  • Kostanyan, Aram, et al. (författare)
  • Switching Molecular Conformation with the Torque on a Single Magnetic Moment
  • 2017
  • Ingår i: Physical Review Letters. - 1079-7114. ; 119
  • Tidskriftsartikel (refereegranskat)abstract
    • For the endohedral fullerene molecule HoLu2N@C80, it is shown that the endohedral HoLu2N unit may be oriented in a magnetic field. The Ho magnetic moment is fixed in the strong ligand field and aligns along the holmium-nitrogen axis. The torque of a magnetic field on the Ho magnetic moment leads to a hopping bias of the endohedral unit inclining to an orientation parallel to the externally applied field. This endohedral cluster distribution remains frozen below the onset of thermally induced rotation of the endohedral units. We derive an analytical statistical model for the description of the effect that scales below 7 T with the square of the external field strength, and that allows us to resolve the freezing temperature of the endohedral hopping motion. The freezing temperature is around 55 K and depends on the cooling rate, which in turn determines an activation energy for the hopping motion of 185 meV and a prefactor of 1.8×1014 s−1. For TbSc2N@C80 we find the same behavior with a 3.5% higher freezing temperature.
  •  
9.
  • Koutsouflakis, Emmanouil, et al. (författare)
  • Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb2@C79N
  • 2022
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 14:27, s. 9877-9892
  • Tidskriftsartikel (refereegranskat)abstract
    • Realization of stable spin states in surface-supported magnetic molecules is crucial for their applications in molecular spintronics, memory storage or quantum information processing. In this work, we studied the surface magnetism of dimetallo-azafullerene Tb2@C79N, showing a broad magnetic hysteresis in a bulk form. Surprisingly, monolayers of Tb2@C79N exhibited a completely different behavior, with the prevalence of a ground state with antiferromagnetic coupling at low magnetic field and a metamagnetic transition in the magnetic field of 2.5-4 T. Monolayers of Tb2@C79N were deposited onto Cu(111) and Au(111) by evaporation in ultra-high vacuum conditions, and their topography and electronic structure were characterized by scanning tunneling microscopy and spectroscopy (STM/STS). X-ray photoelectron spectroscopy (XPS), in combination with DFT studies, revealed that the nitrogen atom of the azafullerene cage tends to avoid metallic surfaces. Magnetic properties of the (sub)monolayers were then studied by X-ray magnetic circular dichroism (XMCD) at the Tb-M4,5 absorption edge. While in bulk powder samples Tb2@C79N behaves as a single-molecule magnet with ferromagnetically coupled magnetic moments and blocking of magnetization at 28 K, its monolayers exhibited a different ground state with antiferromagnetic coupling of Tb magnetic moments. To understand if this unexpected behavior is caused by a strong hybridization of fullerenes with metallic substrates, XMCD measurements were also performed for Tb2@C79N adsorbed on h-BN|Rh(111) and MgO|Ag(100). The co-existence of two forms of Tb2@C79N was found on these substrates as well, but magnetization curves showed narrow magnetic hysteresis detectable up to 25 K. The non-magnetic state of Tb2@C79N in monolayers is assigned to anionic Tb2@C79N− species with doubly-occupied Tb-Tb bonding orbital and antiferromagnetic coupling of the Tb moments. A charge transfer from the substrate or trapping of secondary electrons are discussed as a plausible origin of these species.
  •  
10.
  • Lee, Wei Chuang, et al. (författare)
  • Monolayer calibration of endofullerenes with x-ray absorption from implanted keV ion doses
  • 2024
  • Ingår i: Journal of Vacuum Science & Technology. A. Vacuum, Surfaces, and Films. - : American Institute of Physics (AIP). - 0734-2101 .- 1520-8559. ; 42:2
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray absorption spectroscopy (XAS) has the highest sensitivity for chemical element detection on surfaces. With this approach, small amounts of lanthanide-containing endofullerene molecules (Ho3N@C80) have been measured by total electron yield at a low flux bending magnet beamline. The monolayer coverage is calibrated by extrapolating the signals of constant doses (3 x 1014 cm-2) of Ho ions implanted into SiO2 with energies between 2 and 115 keV. At room temperature, the Ho XAS spectra of the molecules and implanted ions indicate trivalent but not identical Ho ground states. Still, this approach demonstrates a way for calibration of small coverages of molecules containing open core-shell elements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy