SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gredmark Russ S) "

Sökning: WFRF:(Gredmark Russ S)

  • Resultat 1-10 av 22
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Brownlie, D, et al. (författare)
  • Comparison of Lung-Homing Receptor Expression and Activation Profiles on NK Cell and T Cell Subsets in COVID-19 and Influenza
  • 2022
  • Ingår i: Frontiers in immunology. - : Frontiers Media SA. - 1664-3224. ; 13, s. 834862-
  • Tidskriftsartikel (refereegranskat)abstract
    • Respiratory viral infections with SARS-CoV-2 and influenza viruses commonly induce a strong infiltration of immune cells into the human lung, with potential detrimental effects on the integrity of the lung tissue. Despite comprising the largest fractions of circulating lymphocytes in the lung, rather little is known about how peripheral blood natural killer (NK) cell and T cell subsets are equipped for lung-homing in COVID-19 and influenza. Here, we provide a detailed comparative analysis of NK cells and T cells in patients infected with SARS-CoV-2 or influenza virus, focusing on the protein and gene expression of chemokine receptors known to be involved in recruitment to the lung. For this, we used 28-colour flow cytometry as well as re-analysis of a publicly available single-cell RNA-seq dataset from bronchoalveolar lavage (BAL) fluid. Frequencies of NK cells and T cells expressing CXCR3, CXCR6, and CCR5 were altered in peripheral blood of COVID-19 and influenza patients, in line with increased transcript expression of CXCR3, CXCR6, and CCR5 and their respective ligands in BAL fluid. NK cells and T cells expressing lung-homing receptors displayed stronger phenotypic signs of activation compared to cells lacking lung-homing receptors, and activation was overall stronger in influenza compared to COVID-19. Together, our results indicate a role for CXCR3+, CXCR6+, and/or CCR5+ NK cells and T cells that potentially migrate to the lungs in moderate COVID-19 and influenza patients, identifying common targets for future therapeutic interventions in respiratory viral infections.
  •  
5.
  •  
6.
  • Medina, LMP, et al. (författare)
  • Targeted plasma proteomics reveals signatures discriminating COVID-19 from sepsis with pneumonia
  • 2023
  • Ingår i: Respiratory research. - : Springer Science and Business Media LLC. - 1465-993X. ; 24:1, s. 62-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundCOVID-19 remains a major public health challenge, requiring the development of tools to improve diagnosis and inform therapeutic decisions. As dysregulated inflammation and coagulation responses have been implicated in the pathophysiology of COVID-19 and sepsis, we studied their plasma proteome profiles to delineate similarities from specific features.MethodsWe measured 276 plasma proteins involved in Inflammation, organ damage, immune response and coagulation in healthy controls, COVID-19 patients during acute and convalescence phase, and sepsis patients; the latter included (i) community-acquired pneumonia (CAP) caused by Influenza, (ii) bacterial CAP, (iii) non-pneumonia sepsis, and (iv) septic shock patients.ResultsWe identified a core response to infection consisting of 42 proteins altered in both COVID-19 and sepsis, although higher levels of cytokine storm-associated proteins were evident in sepsis. Furthermore, microbiologic etiology and clinical endotypes were linked to unique signatures. Finally, through machine learning, we identified biomarkers, such as TRIM21, PTN and CASP8, that accurately differentiated COVID-19 from CAP-sepsis with higher accuracy than standard clinical markers.ConclusionsThis study extends the understanding of host responses underlying sepsis and COVID-19, indicating varying disease mechanisms with unique signatures. These diagnostic and severity signatures are candidates for the development of personalized management of COVID-19 and sepsis.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Giusti, Pablo, 1975-, et al. (författare)
  • The novel anti-rheumatic compound Rabeximod impairs differentiation and function of human pro-inflammatory dendritic cells and macrophages
  • 2011
  • Ingår i: Immunobiology. - : Elsevier BV. - 0171-2985 .- 1878-3279. ; 216:1-2, s. 243-250
  • Tidskriftsartikel (refereegranskat)abstract
    • Rabeximod (9-chloro-2,3-dimethyl-6-(N,N-dimethylaminoethylamino-2-oxoethyl)-6H-indolo[2,3-b]quinoxaline) is a synthetic compound that is currently being developed for the treatment of rheumatoid arthritis (RA). Here, we investigated the effects of Rabeximod on the functionality of human antigen-presenting cells (APCs) of myeloid origin. Different subsets of professional APCs were generated from human monocytes in vitro and simultaneously treated with different doses of Rabeximod. Although Rabeximod had no effect on the differentiation of monocytes into anti-inflammatory macrophages (AI-Ms), this compound impaired monocyte differentiation into monocyte-derived dendritic cells (MDCs) and pro-inflammatory allostimulated macrophages (Allo-Ms). MDCs that were treated with Rabeximod resulted in a significant decrease in their ability to pinocytose antigens, while no effect was exerted by the drug on the ability of Allo-Ms and AI-Ms to phagocytose. Furthermore, we observed a significant reduction in the allostimulatory ability of MDCs and Allo-Ms after treatment with Rabeximod, although this compound did not affect the low immunostimulatory capacity of AI-Ms. Conversely, the effect of Rabeximod in influencing cytokine secretion by APCs appeared to be limited. In conclusion, Rabeximod impairs differentiation of monocytes into different pro-inflammatory APCs, leading to impaired immunostimulatory abilities of these cells. Our observations shed light on the cellular mode of action and the immunomodulatory effect of Rabeximod.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 22

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy