SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grenman Tiia) "

Sökning: WFRF:(Grenman Tiia)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gahn, G. F., et al. (författare)
  • Globulettes as seeds of brown dwarfs and free-floating planetary-mass objects
  • 2007
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 133:4, s. 1795-1809
  • Tidskriftsartikel (refereegranskat)abstract
    • Some H II regions surrounding young stellar clusters contain tiny dusty clouds, which on photos look like dark spots or teardrops against a background of nebular emission. From our collection of Hα images of 10 H II regions gathered at the Nordic Optical Telescope, we found 173 such clouds, which we call "globulettes," since they are much smaller than normal globules and form a distinct class of objects. Many globulettes are quite isolated and located far from the molecular shells and elephant trunks associated with the regions. Others are attached to the trunks (or shells), suggesting that globulettes may form as a consequence of erosion of these larger structures. None of our objects appear to contain stellar objects. The globulettes were measured for position, dimension, and orientation, and we find that most objects are smaller than 10 kAU. The Rosette Nebula and IC 1805 are particularly rich in globulettes, for which the size distributions peak at mean radii of ∼2.5 kAU, similar to what was found by Reipurth and coworkers and De Marco and coworkers for similar objects in other regions. We estimate total mass and density distributions for each object from extinction measures and conclude that a majority contain <13 MJ, corresponding to planetary-mass objects. We then estimate the internal thermal and potential energies and find, when also including the effects from the outer pressure, that a large fraction of the globulettes could be unstable and would contract on short timescales, < 106 yr. In addition, the radiation pressure and ram pressure exerted on the side facing the clusters would stimulate contraction. Since the globulettes are not screened from stellar light by dust clouds farther in, one would expect photoevaporation to dissolve the objects. However, surprisingly few objects show bright rims or teardrop forms. We calculate the expected lifetimes against photoevaporation. These lifetimes scatter around 4 × 10 6 yr, much longer than estimated in previous studies and also much longer than the free-fall time. We conclude that a large number of our globulettes have time to form central low-mass objects long before the ionization front, driven by the impinging Lyman photons, has penetrated far into the globulette. Hence, the globulettes may be one source in the formation of brown dwarfs and free-floating planetary-mass objects in the galaxy.
  •  
2.
  • Grenman, Tiia (författare)
  • Dusty Globules and Globulettes
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Interstellar gas and dust can condense into clouds of very different size, ranging from giant molecular cloud complexes to massive, isolated, dark cloudlets, called globules with a few solar masses.This thesis focuses on a new category of small globules, named globulettes.These have been found in the bright surroundings of H II regions of young, massive stellar clusters. The globulettes are much smaller and less massive than normal globules. The analysis is based on H-alpha images ofe.g., the Rosette Nebula and the Carina Nebula collected with the Nordic Optical Tele-scope and the Hubble Space Telescope.Most globulettes found in different H II regions have distinct contours and are well isolated from the surrounding molecular shell structures. Masses and densities were derived from the extinction of light through the globulettes and the measured shape of the objects. A majority of the globulettes have planetary masses,<13MJ (Jupiter masses). Very few objects have masses above 100MJ≈0.1M(Solar masses). Hence, there is no smooth overlap between globulettes and globules, which makes us conclude that globulettes represent a distinct, new class of objects.Globulettes might have been formed either by the fragmentation of larger filaments, or by the disintegration of large molecular clouds originally hosting compact and small cores. At a later stage, globulettes expand, disrupt or evaporate. However, preliminary calculations of their lifetimes show that some might survive for a relatively long time, in several cases even longer than their estimated contraction time.The tiny high density globulettes in the Carina Nebula indicate that they are in a more evolved state than those in the Rosette Nebula, and hence they may have survived for a longer time. It is possible that the globulettes could host low mass brown dwarfs or planets.Using the virial theorem on the Rosette Nebula globulettes and including only the thermal and gravitational potential energy indicated that the 133 found globulettes are all either expanding or disrupting. When the ram and the radiation pressure were included, we found that about half of our objectsare gravitationally bound or unstable to contraction and could collapse to form brown dwarfs or free floating planets.We also estimated the amount of globulettes and the number of free floating planetary mass objects, originating from globulettes, during the history of the Milky Way. We found that a conservative value of the number of globulettes formed is 5.7×1010. A less conservative estimate gave 2×1011globulettes andif 10% of these forms free floating planets then the globulettes have contributed about 0.2 free floating planets per star.In the Crab Nebula, which is a supernova remnant from the explosion of a massive old star, one can find dusty globules appearing as dark spots against the background nebulosity. These globules are very similar to the globulettes we have found in H II regions. The total mass of dust in globules was estimated to be 4.5×10−4M, which corresponds to.2% of the total dust content of the nebula. These globules move outward from the center with transversal velocities of 60–1600 km s−1. Using the extinction law for globules, we found that the dust grains are similar to the interstellar dust grains. This means that they contribute to the ISM dust population. We concluded that the majority of the globules are not located in bright filaments and we proposed that these globules may be products of cell-like blobs or granules in the atmosphere of the progenitor star. Theses blobs collapse and form globules during the passage of the blast wave during the explosion.
  •  
3.
  • Grenman, Tiia, et al. (författare)
  • Dusty globules in the Crab Nebula
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 599
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Dust grains are widespread in the Crab Nebula. A number of small, dusty globules, are visible as dark spots against the background of continuous synchrotron emission in optical images. Aims. Our aim is to catalogue such dusty globules and investigate their properties. Methods. From existing broad-band images obtained with the Hubble Space Telescope, we located 92 globules, for which we derived positions, dimensions, orientations, extinctions, masses, proper motions, and their distributions. Results. The globules have mean radii ranging from 400 to 2000 AU and are not resolved in current infrared images of the nebula. The extinction law for dust grains in these globules matches a normal interstellar extinction law. Derived masses of dust range from 1 to 60 × 10-6M⊙, and the total mass contained in globules constitute a fraction of approximately 2% or less of the total dust content of the nebula. The globules are spread over the outer part of the nebula, and a fraction of them coincide in position with emission filaments, where we find elongated globules that are aligned with these filaments. Only 10% of the globules are coincident in position with the numerous H2-emitting knots found in previous studies. All globules move outwards from the centre with transversal velocities of 60 to 1600 km s-1, along with the general expansion of the remnant. We discuss various hypotheses for the formation of globules in the Crab Nebula
  •  
4.
  • Grenman, Tiia (författare)
  • Globulettes : a new class of very small and dense interstellar clouds
  • 2006
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The space between stars is not empty, but filled with a thin gas and microscopic dust grains, together forming the so-called interstellar medium. Matter is concentrated into clouds of very different sizes, ranging from giant molecular cloud complexes to massive isolated dark small isolated cloudlets, called globules. In bright emission regions, surrounding young massive stars, one can find many tiny, isolated and cold objects appearing as dark spots against the background nebulosity. These objects are much smaller and less massive than normal globules. Such small clouds are the topic of the present Licentiate thesis, where they have been baptised globulettes. The analysis is based on H-alpha images of the Rosette Nebula and IC 1805 Nebula, collected with the Nordic Optical Telescope in the years 1999 and 2000. In total 151 globulettes in these two regions were catalogued, measured and analysed. Positions, orientations, sizes, masses, densities and pressures were derived, as well as their present condition with regard to gravitational stability. From these data, their origins and possible evolutionary history were discussed. Most globulettes are sharp-edged and well isolated from the surrounding. The size distributions are quite similar in the two studied nebulae. The masses and densities were derived from the extinction of light and the measured shape of the objects. In a few cases the masses have been estimated earlier by another team, from radio emission of CO gas, and our values are in line with their estimates for these particular globulettes. A majority of the objects have masses < 20 Jupiter masses, and the mass distribution drops rapidly towards higher values. Very few objects have masses above 100 Jupiter masses, which we define as the lower mass limit for normal globules. However, there is no smooth overlap between the two types of clouds, which makes us conclude that globulettes represent a distinct, new class of objects. The column density profile of a typical globulette was found to be rather uniform in the central parts, but flattens at the periphery, as compared to what is expected from a sphere of constant volume density. The virial theorem, including only the kinetic and gravitational energy, indicates that all 133 globulettes are expanding or disrupting. However, other forces, such as outer gas and radiation pressures, can help to confine the globulettes. Our results show that about half of these objects are gravitationally bound and even unstable against contraction, which opens some evolutionary scenarios not expected in the first place. Some massive globulettes could therefore collapse to form stars with very low masses, for instance, so-called brown dwarfs, while the low-mass globulettes could contract to free-floating planets. Globulettes might have been formed either by the fragmentation of larger filaments, or by the disintegration of large molecular clouds originally hosting compact and small cores. At a later stage even the confine globulettes might disrupt because of evaporation form the action of external radiation and gas flows. or evaporate. However, preliminary calculations of their lifetimes show that some might survive for a relatively long time and even longer than their estimated contraction time. No evidence of embedded infrared-emitting sources was found in independent IR studies, but one cannot exclude that globulettes already host low-mass brown dwarfs or planets.
  •  
5.
  • Grenman, Tiia, et al. (författare)
  • History of Globulettes in the Milky Way
  • 2018
  • Ingår i: Astrophysics and Space Science. - : Springer. - 0004-640X .- 1572-946X. ; 363:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Globulettes are small (radii $< 10$ kAU) dark dust clouds, seen against the background of bright nebulae.A majority of the objects have planetary mass.These objects may be a source of brown dwarfs and free floating planetary mass objects in the galaxy.In this paper we investigate how many globulettes could have formed in the Milky Way and how they could contribute to the total population of free floating planets.In order to do that we examine H-alpha images of 27 H~II regions. In these images, we find 778 globulettes.We find that a conservative value of the number of globulettes formed is $5.7\times 10^{10}$.If 10 \% of the globulettes form free floating planets then they have contributed with $5.7\times 10^{9}$ free floating planets in the Milky Way. A less conservative number of globulettes would mean that the globulettes could contribute $2.0\times 10^{10}$ free floating planets.Thus the globulettes could represent a non-negligible source of free floating planets in the Milky Way.
  •  
6.
  • Grenman, Tiia, et al. (författare)
  • The tiny globulettes in the Carina nebula
  • 2014
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 565, s. A107-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Small molecular cloudlets are abundant in many H II regions surrounding newborn stellar clusters. In optical images these so-called globulettes appear as dark silhouettes against the bright nebular background. Aims. We aim to make an inventory of the population of globulettes in the Carina nebula complex, and to derive sizes and masses for comparisons with similar objects found in other H II regions. Methods. The globulettes were identified from H alpha images collected at the Hubble Space Telescope. Results. We have located close to 300 globulettes in the Carina complex, more than in any other region surveyed so far. The objects appear as well-confined dense clumps and, as a rule, lack thinner envelopes and tails. Objects with bright rims are in the minority, but more abundant than in other regions surveyed. Some globulettes are slightly elongated with their major axes oriented in the direction of young clusters in the complex. Many objects are quite isolated and reside at projected distances >1.5 pc from other molecular structures in the neighbourhood. No globulette coincides in position with recognized pre-main-sequence objects in the area. The objects are systematically much smaller, less massive, and much denser than those surveyed in other H II regions. Practically all globulettes are of planetary mass, and most have masses less than one Jupiter mass. The average number densities exceed 105 cm 3 in several objects. We have found a statistical relation between density and radius (mass) in the sense that the smallest objects are also the densest. Conclusions. The population of small globulettes in Carina appears to represent a more advanced evolutionary state than those investigated in other H II regions. The objects are subject to erosion in the intense radiation field, which would lead to a removal of any thinner envelope and an unveiling of the core, which becomes more compact with time. We discuss the possibility that the core may become gravitationally unstable, in which case free-floating planetary mass objects can form.
  •  
7.
  • Grinin, V. P., et al. (författare)
  • Modelling UX Ori star eclipses based on spectral observations with the Nordic Optical Telescope - I. RR Tau
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 524:3, s. 4047-4061
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on observations obtained with the Nordic Optical Telescope (NOT) we investigate the spectral variability of the Herbig Ae star RR Tau. This star belongs to the UX Ori family, characterized by very deep fadings caused by the screening of the star with opaque fragments (clouds) of the protoplanetary discs. At the moments of such minima one observes strong spectral variability due to the fact that the dust cloud occults, for an observer, not only the star but also a part of the region where the emission spectrum originates. We calculated a series of obscuration models to interpret the observed variability of the H a line parameters. We consider two main obscuration scenarios: (1) the dust screen rises vertically above the circumstellar disc, and (2) the screen intersects the line-of-sight moving azimuthally with the disc. In both cases, the model of the emission region consists of a compact magnetosphere and a magnetocentrifugal disc wind. Comparison with observations shows that the first scenario explains well the variability of the radiation flux, the equivalent width, as well as the asymmetry of the H a line during eclipses, while the second scenario explains them only partly. This permits us to suggest that in the case of RR Tau, the main causes of the eclipses are either a structured disc wind, or the charged dust lifted along the field lines of the poloidal component of the magnetic field of the circumstellar disc.
  •  
8.
  • Haikala, L., et al. (författare)
  • Radio observations of globulettes in the Carina nebula
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 602, s. 61-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The Carina nebula hosts a large number of globulettes. An optical study of these tiny molecular clouds shows that the majority are of planetary mass, but there are also those with masses of several tens up to a few hundred Jupiter masses. Aims: We seek to search for, and hopefully detect, molecular line emission from some of the more massive objects; in case of successful detection we aim to map their motion in the Carina nebula complex and derive certain physical properties. Methods: We carried out radio observations of molecular line emission in 12CO and 13CO (2-1) and (3-2) of 12 globulettes in addition to positions in adjacent shell structures using APEX. Results: All selected objects were detected with radial velocities shifted relative to the emission from related shell structures and background molecular clouds. Globulettes along the western part of an extended dust shell show a small spread in velocity with small velocity shifts relative to the shell. This system of globulettes and shell structures in the foreground of the bright nebulosity surrounding the cluster Trumpler 14 is expanding with a few km s-1 relative to the cluster. A couple of isolated globulettes in the area move at similar speed. Compared to similar studies of the molecular line emission from globulettes in the Rosette nebula, we find that the integrated line intensity ratios and line widths are very different. The results show that the Carina objects have a different density/temperature structure than those in the Rosette nebula. In comparison the apparent size of the Carina globulettes is smaller, owing to the larger distance, and the corresponding beam filling factors are small. For this reason we were unable to carry out a more detailed modelling of the structure of the Carina objects in the way as performed for the Rosette objects. Conclusions: The Carina globulettes observed are compact and denser than objects of similar mass in the Rosette nebula. The distribution and velocities of these globulettes suggest that they have originated from eroding shells and elephant trunks. Some globulettes in the Trumpler 14 region are quite isolated and located far from any shell structures. These objects move at a similar speed as the globulettes along the shell, suggesting that they once formed from cloud fragments related to the same foreground shell.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy