SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grew Edward S.) "

Sökning: WFRF:(Grew Edward S.)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grew, Edward S., et al. (författare)
  • Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000Ma Sinceni Pluton, Swaziland: evidence for lithium–cesium–tantalum (LCT) pegmatites in the Mesoarchean
  • 2018
  • Ingår i: European journal of mineralogy. - : Schweizerbart. - 0935-1221 .- 1617-4011. ; 30:2, s. 205-218
  • Tidskriftsartikel (refereegranskat)abstract
    • Mineral evolution is concerned with the timing of mineral occurrences, such as the earliest reported occurrences in the geologic record. Minerals containing essential Li have not been reported from rocks older than ca. 3000 Ma, thus the lithian tourmaline (fluor-elbaite) and mica (lepidolite) assemblage from a pegmatite near Zishineni associated with the ca. 3000Ma Sinceni Pluton presents unusual interest. Fluor-elbaite (0.75–0.98 F per formula unit) forms green crystals up to 50mm long. Spindle stage measurements give ω = 1.652(1), ε = 1.627(1) (589.3 nm). Optical absorption spectroscopy shows Fe and Mn are divalent; infra-red spectroscopy demonstrates the presence of Li and indicates the presence of (OH) at both the (OH) sites. Electron microprobe analysis of 330 points on several prisms, the largest of which is zoned in Fe and Ca, gives the following average and standard deviations in wt%: SiO2 37.29 (0.26), TiO2 0.05 (0.05), Al2O3 38.14 (0.35), Cr2O3 0 (0.02), MgO 0.02 (0.01), MnO 3.57 (0.25), FeO 2.48 (0.60), Na2O 2.48 (0.09), K2O 0.03 (0.12), CaO 0.77 (0.21), F 1.80 (0.11), Cl 0 (0.01) wt%. Nuclear reaction analyses gave Li2O 0.91 (0.04) and B2O3 10.55 (0.45). The empirical formula of fluor-elbaite was determined by integrating crystal-chemical data from electron microprobe analysis, nuclear reaction analysis, crystal structure refinement using X-ray diffraction, infra-red and optical absorption spectroscopy:X(□0.09Na0.77K0.01Ca0.13)Σ1.00 Y(□0.35Li0.59Mn2+0.49Fe2+0.33Al1.23Ti0.01)Σ3.00Al6(Si6O18)(BO3)3O3(OH)3O1[F0.92(OH)0.08]Σ1.00. The crystal structure of fluor-elbaite was refined to statistical indices R1 for 1454 reflections ∼2% using MoKa X-ray intensity data. Structural data confirm the presence of significant vacancies at the Y site. Micas include lepidolite in flakes several millimeters across that are veined and overgrown by fine-grainedmuscovite. Silica and (FeO+MnO) increase, and Al decreases with F, all giving tight linear fits for both micas taken together, suggesting bothmicas can be regarded as interstratified muscovite and lithium mica consisting of 35.2 wt% masutomilite containing nearly equal amounts of Mn and Fe, 52.8 wt% polylithionite and 11.9 wt% trilithionite. Muscovite and lepidolite contain <0.2 wt% and 0.7–2.25 wt% Cs2O and 1.0–1.1 wt% and 1.4–1.5wt% Rb2O, respectively. Other minerals include spessartine (e.g., Sps93Alm4Grs3) in scattered grains up to 0.5mm across and monazite.Oxides occur sparsely in muscovite, rarely in lepidolite, as grains up to 11 mm long, including fluorcalciomicrolite, columbite-(Mn) withNb>Ta, hübnerite(?) and a possible Pb-bearing microlite (Ta>Nb). The oxides, together with the muscovite, are interpreted to be related to later hydrothermal reworking of the primary lepidolite–fluorelbaite assemblage. Given the 2990 ± 43MaRb–Sr isochron and 3074 ± 4Ma evaporation Pb–Pb ages reported for the Sinceni Pluton and Rb/Sr mineral ages ranging from 2906 ± 31Ma to 3072 ± 33Ma reported for the pegmatites, the fluor-elbaite–cesian lepidolite–fluorcalciomicrolite-bearing pegmatite is the first reported occurrence of a lithian tourmaline and lepidolite in the geologic record, as well as one of the two earliest known examples of the lithium–cesium–tantalum (LCT) family of pegmatites. The Sinceni magma is most plausibly derived from a metasedimentary source by intrusion of hot mantle melts into the crust from below, thereby indicating that a “mature” continental crust existed in the Kaapvaal craton at ca. 3000 Ma.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Grew, Edward S., et al. (författare)
  • Nomenclature of the garnet supergroup
  • 2013
  • Ingår i: American Mineralogist. - : Mineralogical Society of America. - 0003-004X .- 1945-3027. ; 98, s. 785-811
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  • Grew, Edward S., et al. (författare)
  • Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup)
  • 2008
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 72, s. 839-876
  • Tidskriftsartikel (refereegranskat)abstract
    • Minerals isostructural with sapphirine-1A, sapphirine-2M, and surinamite are closely related chain silicates that pose nomenclature problems because of the large number of sites and potential constituents, including several (Be, B, As, Sb) that are rare or absent in other chain silicates. Our recommended nomenclature for the sapphirine group (formerly aenigmatite group) makes extensive use of precedent, but applies the rules to all known natural compositions, with flexibility to allow for yet undiscovered compositions such as those reported in synthetic materials. These minerals are part of a polysomatic series composed of pyroxene or pyroxene-like and spinel modules, and thus we recommend that the sapphirine supergroup should encompass the polysomatic series. The first level in the classification is based on polysome, i.e. each group within the supergroup corresponds to a single polysome. At the second level, the sapphirine group is divided into subgroups according to the occupancy of the two largestMsites, namely, sapphirine (Mg), aenigmatite (Na), and rhönite (Ca). Classification at the third level is based on the occupancy of the smallestMsite with most shared edges,M7, at which the dominant cation is most often Ti (aenigmatite, rhönite, makarochkinite), Fe3+(wilkinsonite, dorrite, høgtuvaite) or Al (sapphirine, khmaralite); much less common is Cr (krinovite) and Sb (welshite). At the fourth level, the two most polymerizedTsites are considered together, e.g. ordering of Be at these sites distinguishes høgtuvaite, makarochkinite and khmaralite. Classification at the fifth level is based on XMg= Mg/(Mg + Fe2+) at theMsites (excluding the two largest andMl). In principle, this criterion could be expanded to include other divalent cations at these sites, e.g. Mn. To date, most minerals have been found to be either Mg-dominant (XMg> 0.5), or Fe2+-dominant (XMg< 0.5), at theseMsites. However, XMgranges from 1.00 to 0.03 in material described as rhönite, i.e. there are two species present, one Mg-dominant, the other Fe2+-dominant. Three other potentially new species are a Mg-dominant analogue of wilkinsonite, rhönite in the Allende meteorite, which is distinguished from rhonite and dorrite in that Mg rather than Ti or Fe3+is dominant atMl, and an Al-dominant analogue of sapphirine, in which Al > Si at the two most polymerizedTsitesvs. Al < Si in sapphirine. Further splitting of the supergroup based on occupancies other than those specified above is not recommended.
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy