SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gribble Fiona) "

Sökning: WFRF:(Gribble Fiona)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Marinis, Yang, et al. (författare)
  • GLP-1 inhibits and adrenaline stimulates glucagon release by differential modulation of N- and L-type Ca2+ channel-dependent exocytosis.
  • 2010
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 11:6, s. 543-553
  • Tidskriftsartikel (refereegranskat)abstract
    • Glucagon secretion is inhibited by glucagon-like peptide-1 (GLP-1) and stimulated by adrenaline. These opposing effects on glucagon secretion are mimicked by low (1-10 nM) and high (10 muM) concentrations of forskolin, respectively. The expression of GLP-1 receptors in alpha cells is <0.2% of that in beta cells. The GLP-1-induced suppression of glucagon secretion is PKA dependent, is glucose independent, and does not involve paracrine effects mediated by insulin or somatostatin. GLP-1 is without much effect on alpha cell electrical activity but selectively inhibits N-type Ca(2+) channels and exocytosis. Adrenaline stimulates alpha cell electrical activity, increases [Ca(2+)](i), enhances L-type Ca(2+) channel activity, and accelerates exocytosis. The stimulatory effect is partially PKA independent and reduced in Epac2-deficient islets. We propose that GLP-1 inhibits glucagon secretion by PKA-dependent inhibition of the N-type Ca(2+) channels via a small increase in intracellular cAMP ([cAMP](i)). Adrenaline stimulates L-type Ca(2+) channel-dependent exocytosis by activation of the low-affinity cAMP sensor Epac2 via a large increase in [cAMP](i).
  •  
2.
  • Iglesias, José, et al. (författare)
  • PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice
  • 2012
  • Ingår i: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 122:11, s. 4105-4117
  • Tidskriftsartikel (refereegranskat)abstract
    • PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.
  •  
3.
  • Kuhre, Rune E., et al. (författare)
  • No direct effect of SGLT2 activity on glucagon secretion
  • 2019
  • Ingår i: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:6, s. 1011-1023
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: Sodium–glucose cotransporter (SGLT) 2 inhibitors constitute a new class of glucose-lowering drugs, but they increase glucagon secretion, which may counteract their glucose-lowering effect. Previous studies using static incubation of isolated human islets or the glucagon-secreting cell line α-TC1 suggested that this results from direct inhibition of alpha cell SGLT1/2-activity. The aim of this study was to test whether the effects of SGLT2 on glucagon secretion demonstrated in vitro could be reproduced in a more physiological setting. Methods: We explored the effect of SGLT2 activity on glucagon secretion using isolated perfused rat pancreas, a physiological model for glucagon secretion. Furthermore, we investigated Slc5a2 (the gene encoding SGLT2) expression in rat islets as well as in mouse and human islets and in mouse and human alpha, beta and delta cells to test for potential inter-species variations. SGLT2 protein content was also investigated in mouse, rat and human islets. Results: Glucagon output decreased three- to fivefold within minutes of shifting from low (3.5 mmol/l) to high (10 mmol/l) glucose (4.0 ± 0.5 pmol/15 min vs 1.3 ± 0.3 pmol/15 min, p < 0.05). The output was unaffected by inhibition of SGLT1/2 with dapagliflozin or phloridzin or by addition of the SGLT1/2 substrate α-methylglucopyranoside, whether at low or high glucose concentrations (p = 0.29–0.99). Insulin and somatostatin secretion (potential paracrine regulators) was also unaffected. Slc5a2 expression and SGLT2 protein were marginal or below detection limit in rat, mouse and human islets and in mouse and human alpha, beta and delta cells. Conclusions/interpretation: Our combined data show that increased plasma glucagon during SGLT2 inhibitor treatment is unlikely to result from direct inhibition of SGLT2 in alpha cells, but instead may occur downstream of their blood glucose-lowering effects.
  •  
4.
  •  
5.
  • Li, Jia, et al. (författare)
  • Submembrane ATP and Ca2+ kinetics in alpha-cells : unexpected signaling for glucagon secretion
  • 2015
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 29:8, s. 3379-3388
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytoplasmic ATP and Ca2+ are implicated in current models of glucose's control of glucagon and insulin secretion from pancreatic alpha- and beta-cells, respectively, but little is known about ATP and its relation to Ca2+ in alpha-cells. We therefore expressed the fluorescent ATP biosensor Perceval in mouse pancreatic islets and loaded them with a Ca2+ indicator. With total internal reflection fluorescence microscopy, we recorded subplasma membrane concentrations of Ca2+ and ATP ([Ca2+](pm); [ATP](pm)) in superficial alpha- and beta-cells of intact islets and related signaling to glucagon and insulin secretion by immunoassay. Consistent with ATP's controlling glucagon and insulin secretion during hypo- and hyperglycemia, respectively, the dose-response relationship for glucoseinduced [ATP](pm) generation was left shifted in alpha-cells compared to beta-cells. Both cell types showed [Ca2+](pm) and [ATP](pm) oscillations in opposite phase, probably reflecting energy-consuming Ca2+ transport. Although pulsatile insulin and glucagon release are in opposite phase, [Ca2+](pm) synchronized in the same phase between alpha- and beta-cells. This paradox can be explained by the overriding of Ca2+ stimulation by paracrine inhibition, because somatostatin receptor blockade potently stimulated glucagon release with little effect on Ca2+. The data indicate that an alpha-cell-intrinsic mechanism controls glucagon in hypoglycemia and that paracrine factors shape pulsatile secretion in hyperglycemia.
  •  
6.
  • Loos, Ruth J F, et al. (författare)
  • TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population.
  • 2007
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 56:7, s. 1943-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapidly accumulating evidence shows that common T-cell transcription factor (TCF)7L2 polymorphisms confer risk of type 2 diabetes through unknown mechanisms. We examined the association between four TCF7L2 single nucleotide polymorphisms (SNPs), including rs7903146, and measures of insulin sensitivity and insulin secretion in 1,697 Europid men and women of the population-based MRC (Medical Research Council)-Ely study. The T-(minor) allele of rs7903146 was strongly and positively associated with fasting proinsulin (P = 4.55 × 10−9) and 32,33 split proinsulin (P = 1.72 × 10−4) relative to total insulin levels; i.e., differences between T/T and C/C homozygotes amounted to 21.9 and 18.4% respectively. Notably, the insulin-to-glucose ratio (IGR) at 30-min oral glucose tolerance test (OGTT), a frequently used surrogate of first-phase insulin secretion, was not associated with the TCF7L2 SNP (P &gt; 0.7). However, the insulin response (IGR) at 60-min OGTT was significantly lower in T-allele carriers (P = 3.5 × 10−3). The T-allele was also associated with higher A1C concentrations (P = 1.2 × 10−2) and reduced β-cell function, assessed by homeostasis model assessment of β-cell function (P = 2.8 × 10−2). Similar results were obtained for the other TCF7L2 SNPs. Of note, both major genes involved in proinsulin processing (PC1, PC2) contain TCF-binding sites in their promoters. Our findings suggest that the TCF7L2 risk allele may predispose to type 2 diabetes by impairing β-cell proinsulin processing. The risk allele increases proinsulin levels and diminishes the 60-min but not 30-min insulin response during OGTT. The strong association between the TCF7L2 risk allele and fasting proinsulin but not insulin levels is notable, as, in this unselected and largely normoglycemic population, external influences on β-cell stress are unlikely to be major factors influencing the efficiency of proinsulin processing.
  •  
7.
  • Stamenkovic, Jelena, et al. (författare)
  • Inhibition of the malate-aspartate shuttle in mouse pancreatic islets abolishes glucagon secretion without affecting insulin secretion
  • 2015
  • Ingår i: Biochemical Journal. - 0264-6021. ; 468, s. 49-63
  • Tidskriftsartikel (refereegranskat)abstract
    • Altered secretion of insulin as well as glucagon has been implicated in the pathogenesis of Type 2 diabetes (T2D), but the mechanisms controlling glucagon secretion from alpha-cells largely remain unresolved. Therefore, we studied the regulation of glucagon secretion from alpha TC1-6 (alpha TC1 clone 6) cells and compared it with insulin release from INS-1 832/13 cells. We found that INS-1 832/13 and alpha TC1-6 cells respectively secreted insulin and glucagon concentration-dependently in response to glucose. In contrast, tight coupling of glycolytic and mitochondrial metabolism was observed only in INS-1 832/13 cells. Although glycolytic metabolism was similar in the two cell lines, TCA (tricarboxylic acid) cycle metabolism, respiration and ATP levels were less glucose-responsive in alpha TC1-6 cells. Inhibition of the malate-aspartate shuttle, using phenyl succinate (PhS), abolished glucose-provoked ATP production and hormone secretion from alpha TC1-6 but not INS-1 832/13 cells. Blocking the malate-aspartate shuttle increased levels of glycerol 3-phosphate only in INS-1 832/13 cells. Accordingly, relative expression of constituents in the glycerol phosphate shuttle compared with malate-aspartate shuttle was lower in alpha TC1-6 cells. Our data suggest that the glycerol phosphate shuttle augments the malate-aspartate shuttle in INS-1 832/13 but not alpha TC1-6 cells. These results were confirmed in mouse islets, where PhS abrogated secretion of glucagon but not insulin. Furthermore, expression of the rate-limiting enzyme of the glycerol phosphate shuttle was higher in sorted primary beta-than in alpha-cells. Thus, suppressed glycerol phosphate shuttle activity in the alpha-cell may prevent a high rate of glycolysis and consequently glucagon secretion in response to glucose. Accordingly, pyruvate-and lactate-elicited glucagon secretion remains unaffected since their signalling is independent of mitochondrial shuttles.
  •  
8.
  • Vergari, Elisa, et al. (författare)
  • Insulin inhibits glucagon release by SGLT2-induced stimulation of somatostatin secretion
  • 2019
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoglycaemia (low plasma glucose) is a serious and potentially fatal complication of insulin-treated diabetes. In healthy individuals, hypoglycaemia triggers glucagon secretion, which restores normal plasma glucose levels by stimulation of hepatic glucose production. This counterregulatory mechanism is impaired in diabetes. Here we show in mice that therapeutic concentrations of insulin inhibit glucagon secretion by an indirect (paracrine) mechanism mediated by stimulation of intra-islet somatostatin release. Insulin's capacity to inhibit glucagon secretion is lost following genetic ablation of insulin receptors in the somatostatin-secreting δ-cells, when insulin-induced somatostatin secretion is suppressed by dapagliflozin (an inhibitor of sodium-glucose co-tranporter-2; SGLT2) or when the action of secreted somatostatin is prevented by somatostatin receptor (SSTR) antagonists. Administration of these compounds in vivo antagonises insulin's hypoglycaemic effect. We extend these data to isolated human islets. We propose that SSTR or SGLT2 antagonists should be considered as adjuncts to insulin in diabetes therapy.
  •  
9.
  • Wallenius, Ville, 1970, et al. (författare)
  • Suppression of enteroendocrine cell glucagon-like peptide (GLP)-1 release by fat-induced small intestinal ketogenesis: a mechanism targeted by Roux-en-Y gastric bypass surgery but not by preoperative very-low-calorie diet.
  • 2020
  • Ingår i: Gut. - : BMJ. - 1468-3288 .- 0017-5749. ; 69:8, s. 1423-1431
  • Tidskriftsartikel (refereegranskat)abstract
    • Food intake normally stimulates release of satiety and insulin-stimulating intestinal hormones, such as glucagon-like peptide (GLP)-1. This response is blunted in obese insulin resistant subjects, but is rapidly restored following Roux-en-Y gastric bypass (RYGB) surgery. We hypothesised this to be a result of the metabolic changes taking place in the small intestinal mucosa following the anatomical rearrangement after RYGB surgery, and aimed at identifying such mechanisms.Jejunal mucosa biopsies from patients undergoing RYGB surgery were retrieved before and after very-low calorie diet, at time of surgery and 6 months postoperatively. Samples were analysed by global protein expression analysis and Western blotting. Biological functionality of these findings was explored in mice and enteroendocrine cells (EECs) primary mouse jejunal cell cultures.The most prominent change found after RYGB was decreased jejunal expression of the rate-limiting ketogenic enzyme mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase (mHMGCS), corroborated by decreased ketone body levels. In mice, prolonged high-fat feeding induced the expression of mHMGCS and functional ketogenesis in jejunum. The effect of ketone bodies on gut peptide secretion in EECs showed a ∼40% inhibition of GLP-1 release compared with baseline.Intestinal ketogenesis is induced by high-fat diet and inhibited by RYGB surgery. In cell culture, ketone bodies inhibited GLP-1 release from EECs. Thus, we suggest that this may be a mechanism by which RYGB can remove the inhibitory effect of ketone bodies on EECs, thereby restituting the responsiveness of EECs resulting in increased meal-stimulated levels of GLP-1 after surgery.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy