SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Griggs Sophie) "

Sökning: WFRF:(Griggs Sophie)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Abdel Aziz, Ilaria, et al. (författare)
  • Drug delivery via a 3D electro-swellable conjugated polymer hydrogel
  • 2024
  • Ingår i: Journal of materials chemistry. B. - : ROYAL SOC CHEMISTRY. - 2050-750X .- 2050-7518.
  • Tidskriftsartikel (refereegranskat)abstract
    • Spatiotemporal controlled drug delivery minimizes side-effects and enables therapies that require specific dosing patterns. Conjugated polymers (CP) can be used for electrically controlled drug delivery; however so far, most demonstrations were limited to molecules up to 500 Da. Larger molecules could be incorporated only during the CP polymerization and thus limited to a single delivery. This work harnesses the record volume changes of a glycolated polythiophene p(g3T2) for controlled drug delivery. p(g3T2) undergoes reversible volumetric changes of up to 300% during electrochemical doping, forming pores in the nm-size range, resulting in a conducting hydrogel. p(g3T2)-coated 3D carbon sponges enable controlled loading and release of molecules spanning molecular weights of 800-6000 Da, from simple dyes up to the hormone insulin. Molecules are loaded as a combination of electrostatic interactions with the charged polymer backbone and physical entrapment in the porous matrix. Smaller molecules leak out of the polymer while larger ones could not be loaded effectively. Finally, this work shows the temporally patterned release of molecules with molecular weight of 1300 Da and multiple reloading and release cycles without affecting the on/off ratio.
  •  
2.
  • Abdel Aziz, Ilaria, et al. (författare)
  • Electrochemical modulation of mechanical properties of glycolated polythiophenes
  • 2024
  • Ingår i: Materials Horizons. - : ROYAL SOC CHEMISTRY. - 2051-6347 .- 2051-6355.
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical doping of organic mixed ionic-electronic conductors is key for modulating their conductivity, charge storage and volume enabling high performing bioelectronic devices such as recording and stimulating electrodes, transistors-based sensors and actuators. However, electrochemical doping has not been explored to the same extent for modulating the mechanical properties of OMIECs on demand. Here, we report a qualitative and quantitative study on how the mechanical properties of a glycolated polythiophene, p(g3T2), change in situ during electrochemical doping and de-doping. The Young's modulus of p(g3T2) changes from 69 MPa in the dry state to less than 10 MPa in the hydrated state and then further decreases down to 0.4 MPa when electrochemically doped. With electrochemical doping-dedoping the Young's modulus of p(g3T2) changes by more than one order of magnitude reversibly, representing the largest modulation reported for an OMIEC. Furthermore, we show that the electrolyte concentration affects the magnitude of the change, demonstrating that in less concentrated electrolytes more water is driven into the film due to osmosis and therefore the film becomes softer. Finally, we find that the oligo ethylene glycol side chain functionality, specifically the length and asymmetry, affects the extent of modulation. Our findings show that glycolated polythiophenes are promising materials for mechanical actuators with a tunable modulus similar to the range of biological tissues, thus opening a pathway for new mechanostimulation devices. This work investigates the changes in the mechanical properties of glycolated polythiophenes induced by electrochemical addressing and by electrolyte concentration, due to its ability to stabilize water.
  •  
3.
  • Craighero, Mariavittoria, 1995, et al. (författare)
  • Impact of Oligoether Side-Chain Length on the Thermoelectric Properties of a Polar Polythiophene
  • 2024
  • Ingår i: ACS Applied Electronic Materials. - : AMER CHEMICAL SOC. - 2637-6113. ; 6:5, s. 2909-2916
  • Forskningsöversikt (refereegranskat)abstract
    • Conjugated polymers with oligoether side chains make up a promising class of thermoelectric materials. In this work, the impact of the side-chain length on the thermoelectric and mechanical properties of polythiophenes is investigated. Polymers with tri-, tetra-, or hexaethylene glycol side chains are compared, and the shortest length is found to result in thin films with the highest degree of order upon doping with the p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ). As a result, a stiff material with an electrical conductivity of up to 830 +/- 15 S cm(-1) is obtained, resulting in a thermoelectric power factor of about 21 mu W m(-1) K-2 in the case of as-cast films. Aging at ambient conditions results in an initial decrease in thermoelectric properties but then yields a highly stable performance for at least 3 months, with values of about 200 S cm(-1) and 5 mu W m(-1) K-2. Evidently, identification of the optimal side-chain length is an important criterion for the design of conjugated polymers for organic thermoelectrics.
  •  
4.
  • De La Fuente Durán, Ana, et al. (författare)
  • Origins of hydrogen peroxide selectivity during oxygen reduction on organic mixed ionic-electronic conducting polymers
  • 2023
  • Ingår i: Energy and Environmental Sciences. - 1754-5692 .- 1754-5706. ; 16:11, s. 5409-5422
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrochemical reduction of atmospheric oxygen provides carbon emission-free pathways for the generation of electricity from chemical fuels and for the distributed production of green chemical oxidants like hydrogen peroxide. Recently, organic mixed ionic-electronic conducting polymers (OMIECs) have been reported as a new class of active electrode materials for the oxygen reduction reaction. This work sets out to identify the operative oxygen reduction mechanism of OMIECs through a multi-faceted experimental and theoretical approach. Using a combination of pH-dependent electrochemical characterization, operando UV-Vis and Raman spectroscopy, and ab initio calculations, we find that the n-type OMIEC, p(NDI-T2 P75), displays pH-dependent activity for the selective reduction of oxygen to the 2-electron hydrogen peroxide product. We use microkinetic simulations of the electrochemical behavior to rationalize our experimental observations through a polaron-mediated, non-adsorptive pathway involving chemical reduction of oxygen to the 1-electron superoxide intermediate followed by pH-dependent catalytic disproportionation to hydrogen peroxide. Finally, this pathway is applied to understand the experimental oxygen reduction reactivity across several n- and p-type OMIECs.
  •  
5.
  • Gladisch, Johannes, et al. (författare)
  • An Electroactive Filter with Tunable Porosity Based on Glycolated Polythiophene
  • 2022
  • Ingår i: Small Science. - : Wiley. - 2688-4046. ; 2:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The porosity of filters is typically fixed; thus, complex purification processes require application of multiple specialized filters. In contrast, smart filters with controllable and tunable properties enable dynamic separation in a single setup. Herein, an electroactive filter with controllable pore size is demonstrated. The electroactive filter is based on a metal mesh coated with a polythiophene polymer with ethylene glycol sidechains (p(g3T2)) that exhibit unprecedented voltage-driven volume changes. By optimizing the polymer coating on the mesh, controllable porosity during electrochemical addressing is achieved. The pores reversibly open and close, with a dynamic range of more than 95%, corresponding to over 30 mu m change of pores widths. Furthermore, the pores widths could be defined by applied potential with a 10 mu m resolution. From among hundreds of pores from different samples, about 90% of the pores could be closed completely, while only less than 1% are inactive. Finally, the electroactive filter is used to control the flow of a dye, highlighting the potential for flow control and smart filtration applications.
  •  
6.
  • Marks, Adam, et al. (författare)
  • Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 144:10, s. 4642-4656
  • Tidskriftsartikel (refereegranskat)abstract
    • A series of fully fused n-type mixed conduction lactam polymers p(g(7)NC(n)N), systematically increasing the alkyl side chain content, are synthesized via an inexpensive, nontoxic, precious-metal-free aldol polycondensation. Employing these polymers as channel materials in organic electrochemical transistors (OECTs) affords state-of-the-art n-type performance with p(g(7)NC(10)N) recording an OECT electron mobility of 1.20 x 10(-2) cm(2) V-1 s(-1) and a mu C* figure of merit of 1.83 F cm(-1) V-1 s(-1). In parallel to high OECT performance, upon solution doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI), the highest thermoelectric performance is observed for p(g(7)NC(4)N), with a maximum electrical conductivity of 7.67 S cm(-1) and a power factor of 10.4 mu Wm(-1) K-2. These results are among the highest reported for n-type polymers. Importantly, while this series of fused polylactam organic mixed ionic-electronic conductors (OMIECs) highlights that synthetic molecular design strategies to bolster OECT performance can be translated to also achieve high organic thermoelectric (OTE) performance, a nuanced synthetic approach must be used to optimize performance. Herein, we outline the performance metrics and provide new insights into the molecular design guidelines for the next generation of high-performance n-type materials for mixed conduction applications, presenting for the first time the results of a single polymer series within both OECT and OTE applications.
  •  
7.
  • Nilsson, Måns, et al. (författare)
  • Mapping interactions between the sustainable development goals : lessons learned and ways forward
  • 2018
  • Ingår i: Sustainability Science. - : SPRINGER JAPAN KK. - 1862-4065 .- 1862-4057. ; 13:6, s. 1489-1503
  • Tidskriftsartikel (refereegranskat)abstract
    • Pursuing integrated research and decision-making to advance action on the sustainable development goals (SDGs) fundamentally depends on understanding interactions between the SDGs, both negative ones (trade-offs) and positive ones (co-benefits). This quest, triggered by the 2030 Agenda, has however pointed to a gap in current research and policy analysis regarding how to think systematically about interactions across the SDGs. This paper synthesizes experiences and insights from the application of a new conceptual framework for mapping and assessing SDG interactions using a defined typology and characterization approach. Drawing on results from a major international research study applied to the SDGs on health, energy and the ocean, it analyses how interactions depend on key factors such as geographical context, resource endowments, time horizon and governance. The paper discusses the future potential, barriers and opportunities for applying the approach in scientific research, in policy making and in bridging the two through a global SDG Interactions Knowledge Platform as a key mechanism for assembling, systematizing and aggregating knowledge on interactions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy