SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gril Eva) "

Sökning: WFRF:(Gril Eva)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Frenne, Pieter, et al. (författare)
  • Forest microclimates and climate change : Importance, drivers and future research agenda
  • 2021
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 27:11, s. 2279-2297
  • Forskningsöversikt (refereegranskat)abstract
    • Forest microclimates contrast strongly with the climate outside forests. To fully understand and better predict how forests' biodiversity and functions relate to climate and climate change, microclimates need to be integrated into ecological research. Despite the potentially broad impact of microclimates on the response of forest ecosystems to global change, our understanding of how microclimates within and below tree canopies modulate biotic responses to global change at the species, community and ecosystem level is still limited. Here, we review how spatial and temporal variation in forest microclimates result from an interplay of forest features, local water balance, topography and landscape composition. We first stress and exemplify the importance of considering forest microclimates to understand variation in biodiversity and ecosystem functions across forest landscapes. Next, we explain how macroclimate warming (of the free atmosphere) can affect microclimates, and vice versa, via interactions with land-use changes across different biomes. Finally, we perform a priority ranking of future research avenues at the interface of microclimate ecology and global change biology, with a specific focus on three key themes: (1) disentangling the abiotic and biotic drivers and feedbacks of forest microclimates; (2) global and regional mapping and predictions of forest microclimates; and (3) the impacts of microclimate on forest biodiversity and ecosystem functioning in the face of climate change. The availability of microclimatic data will significantly increase in the coming decades, characterizing climate variability at unprecedented spatial and temporal scales relevant to biological processes in forests. This will revolutionize our understanding of the dynamics, drivers and implications of forest microclimates on biodiversity and ecological functions, and the impacts of global changes. In order to support the sustainable use of forests and to secure their biodiversity and ecosystem services for future generations, microclimates cannot be ignored.
  •  
2.
  • Gril, Eva, et al. (författare)
  • Slope and equilibrium : A parsimonious and flexible approach to model microclimate
  • 2023
  • Ingår i: Methods in Ecology and Evolution. - 2041-210X. ; 14:3, s. 885-897
  • Tidskriftsartikel (refereegranskat)abstract
    • Most statistical models of microclimate focus on the difference or ‘offset’ between standardized air temperatures (macroclimate) and those of a specific habitat such as forest understorey, grassland or under a log. However, these offsets can fluctuate from positive to negative over a single day such that common practice consists in aggregating data into daily mean, minimum and maximum before modelling monthly offsets for each summary statistic. Here, we propose a more parsimonious and flexible approach relying on just two parameters: the slope and equilibrium. The slope captures the linear relationship between microclimate and macroclimate, while the equilibrium is the point at which microclimate equals macroclimate. Although applicable to other habitats, we demonstrate the relevance of our method by focusing on forest understoreys.We installed temperature sensors at 1-m height inside forest stands and in nearby open grasslands equipped with standardized weather stations, across 13 sites in France spanning a wide climatic gradient. From a year of hourly temperatures and for each sensor, we established relationships between microclimate and macroclimate temperatures using two linear mixed-effects models, during the leaf-on (May–November) and leaf-off period (December–April). We extracted the monthly equilibrium and slope for each sensor, and used another set of linear mixed-effects models to investigate their main determinants.The slope was chiefly determined by stand structure variables interacting with the leaf-on/leaf-off period: stand type (conifer vs broadleaf); shade-casting ability; stand age; dominant height; stem density; and cover of the upper and lower shrub layer. In contrast, forest structure had no explanatory power on the equilibrium. We found the equilibrium to be positively related to mean macroclimate temperature, interacting with the open/forest habitat.The method introduced here overcomes several shortcomings of modelling microclimate offsets. By demonstrating that the slope and equilibrium vary in predictable ways, we have established a general linkage between microclimate and macroclimate temperatures that can be applied to any location or time if we know the mean macroclimate temperature (equilibrium) and buffering or amplifying capacity of the habitat (slope). We also warn about methodological biases due to the reference used for macroclimate.
  •  
3.
  • Kemppinen, Julia, et al. (författare)
  • Microclimate, an important part of ecology and biogeography
  • 2024
  • Ingår i: GLOBAL ECOLOGY AND BIOGEOGRAPHY. - 1466-822X .- 1466-8238. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Brief introduction: What are microclimates and why are they important?Microclimate science has developed into a global discipline. Microclimate science is increasingly used to understand and mitigate climate and biodiversity shifts. Here, we provide an overview of the current status of microclimate ecology and biogeography in terrestrial ecosystems, and where this field is heading next.Microclimate investigations in ecology and biogeographyWe highlight the latest research on interactions between microclimates and organisms, including how microclimates influence individuals, and through them populations, communities and entire ecosystems and their processes. We also briefly discuss recent research on how organisms shape microclimates from the tropics to the poles.Microclimate applications in ecosystem managementMicroclimates are also important in ecosystem management under climate change. We showcase new research in microclimate management with examples from biodiversity conservation, forestry and urban ecology. We discuss the importance of microrefugia in conservation and how to promote microclimate heterogeneity.Methods for microclimate scienceWe showcase the recent advances in data acquisition, such as novel field sensors and remote sensing methods. We discuss microclimate modelling, mapping and data processing, including accessibility of modelling tools, advantages of mechanistic and statistical modelling and solutions for computational challenges that have pushed the state-of-the-art of the field.What's next?We identify major knowledge gaps that need to be filled for further advancing microclimate investigations, applications and methods. These gaps include spatiotemporal scaling of microclimate data, mismatches between macroclimate and microclimate in predicting responses of organisms to climate change, and the need for more evidence on the outcomes of microclimate management.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy