SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grinin V. P.) "

Sökning: WFRF:(Grinin V. P.)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Galan, C., et al. (författare)
  • International observational campaigns of the last two eclipses in EE Cephei : 2003 and 2008/9
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 544, s. A53-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. EECep is an unusual long-period (5.6 yr) eclipsing binary discovered during the mid-twentieth century. It undergoes almost-grey eclipses that vary in terms of both depth and duration at different epochs. The system consists of a Be type star and a dark dusty disk around an invisible companion. EECep together with the widely studied epsilon Aur are the only two known cases of long-period eclipsing binaries with a dark, dusty disk component responsible for periodic obscurations.Aims. Two observational campaigns were carried out during the eclipses of EECep in 2003 and 2008/9 to verify whether the eclipsing body in the system is indeed a dark disk and to understand the observed changes in the depths and durations of the eclipses.Methods. Multicolour photometric data and spectroscopic observations performed at both low and high resolutions were collected with several dozen instruments located in Europe and North America. We numerically modelled the variations in brightness and colour during the eclipses. We tested models with different disk structure, taking into consideration the inhomogeneous surface brightness of the Be star. We considered the possibility of disk precession.Results. The complete set of observational data collected during the last three eclipses are made available to the astronomical community. The 2003 and 2008/9 eclipses of EECep were very shallow. The latter is the shallowest among all observed. The very high quality photometric data illustrate in detail the colour evolution during the eclipses for the first time. Two blue maxima in the colour indices were detected during these two eclipses, one before and one after the photometric minimum. The first (stronger) blue maximum is simultaneous with a "bump" that is very clear in all the UBV(RI)(C) light curves. A temporary increase in the I-band brightness at the orbital phase similar to 0.2 was observed after each of the last three eclipses. Variations in the spectral line profiles seem to be recurrent during each cycle. The Na I lines always show at least three absorption components during the eclipse minimum and strong absorption is superimposed on the H alpha emission.Conclusions. These observations confirm that the eclipsing object in EECep system is indeed a dark, dusty disk around a low luminosity object. The primary appears to be a rapidly rotating Be star that is strongly darkened at the equator and brightened at the poles. Some of the conclusions of this work require verification in future studies: (i) a complex, possibly multi-ring structure of the disk in EECep; (ii) our explanation of the "bump" observed during the last two eclipses in terms of the different times of obscuration of the hot polar regions of the Be star by the disk; and (iii) our suggested period of the disk precession (similar to 11-12 P-orb) and predicted depth of about 2(m) for the forthcoming eclipse in 2014.
  •  
2.
  • Gahm, Gösta F., et al. (författare)
  • S Coronae Australis : a T Tauri twin
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 614
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The star S CrA is a tight visual binary consisting of two classical T Tauri stars. Both components are outstanding regarding their spectral characteristics and brightness variations. Aims. Our aim is to explore the extraordinary spectral features seen in these stars, derive stellar parameters, define spectral signatures of accreting gas and winds, estimate the inclinations of the disks, and to match numerical models with observed properties. Methods. High-resolution spectra were collected of each component over several nights at the European Southern Observatory (ESO) combined with photometric observations covering several years in UBVRI with the SMARTS telescope. The models developed include magnetospheric accretion and a disk wind. Results. Both stars undergo large variation in brightness, >= 2 mag in V band. The variations are caused mainly by variable foreground extinction from small-size dust grains, which may be carried along with the accreting gas. The photospheric absorption lines are washed out by superimposed continuous and line emission, and this veiling becomes occasionally exceptionally high. Nevertheless, we extracted the stellar spectra and found that both stars are very similar with regard to stellar parameters (T-eff, log g, v sin i, mass, radius, luminosity). The rotational periods, inferred from velocity shifts in lines originating in surface areas off-set from the pole, are also similar. Combined with the v sin i:s related inclinations were obtained, which agree well with those derived from our model simulations of Balmer line profiles: similar to 65 degrees for both stars. At this orientation the trajectories of infalling gas just above the stellar surfaces are parallel to the line-of-sight, and accordingly we observe extended red-shifted absorption components extending to +380 km s(-1), the estimated free-fall velocity at the surface. Rates of accretion and mass loss were obtained from the models. Conclusions. The two stars are remarkably similar, and S CrA can be regarded as a T Tauri twin. The components differ, however, in terms of degree of veiling and emission line profiles. We have found a good match between observed signatures of accreting gas, wind features, and rotational velocities with those resulting from our modelling for inclinations of similar to 65 degrees. These inclinations differ from those derived from interferometric near-infrared (NIR) spectroscopy, and possible causes for this puzzling discrepancy are discussed.
  •  
3.
  • Grinin, V. P., et al. (författare)
  • Modelling UX Ori star eclipses based on spectral observations with the Nordic Optical Telescope - I. RR Tau
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 524:3, s. 4047-4061
  • Tidskriftsartikel (refereegranskat)abstract
    • Based on observations obtained with the Nordic Optical Telescope (NOT) we investigate the spectral variability of the Herbig Ae star RR Tau. This star belongs to the UX Ori family, characterized by very deep fadings caused by the screening of the star with opaque fragments (clouds) of the protoplanetary discs. At the moments of such minima one observes strong spectral variability due to the fact that the dust cloud occults, for an observer, not only the star but also a part of the region where the emission spectrum originates. We calculated a series of obscuration models to interpret the observed variability of the H a line parameters. We consider two main obscuration scenarios: (1) the dust screen rises vertically above the circumstellar disc, and (2) the screen intersects the line-of-sight moving azimuthally with the disc. In both cases, the model of the emission region consists of a compact magnetosphere and a magnetocentrifugal disc wind. Comparison with observations shows that the first scenario explains well the variability of the radiation flux, the equivalent width, as well as the asymmetry of the H a line during eclipses, while the second scenario explains them only partly. This permits us to suggest that in the case of RR Tau, the main causes of the eclipses are either a structured disc wind, or the charged dust lifted along the field lines of the poloidal component of the magnetic field of the circumstellar disc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy