SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gripenland Jonas) "

Sökning: WFRF:(Gripenland Jonas)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andersson, Christopher, et al. (författare)
  • Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections
  • 2015
  • Ingår i: Nature Protocols. - : Nature Publishing Group. - 1754-2189 .- 1750-2799. ; 10:8, s. 1155-1164
  • Tidskriftsartikel (refereegranskat)abstract
    • Microbial infections are a global health problem, particularly as microbes are continually developing resistance to antimicrobial treatments. An effective and reliable method for testing the virulence of different microbial pathogens is therefore a useful research tool. This protocol describes how the chicken embryo can be used as a trustworthy, inexpensive, ethically desirable and quickly accessible model to assess the virulence of the human bacterial pathogen Listeria monocytogenes, which can also be extended to other microbial pathogens. We provide a step-by-step protocol and figures and videos detailing the method, including egg handling, infection strategies, pathogenicity screening and isolation of infected organs. From the start of incubation of the fertilized eggs, the protocol takes <4 weeks to complete, with the infection part taking only 3 d. We discuss the appropriate controls to use and potential adjustments needed for adapting the protocol for other microbial pathogens.
  •  
3.
  •  
4.
  • Gripenland, Jonas, et al. (författare)
  • Exploring the chicken embryo as a possible model for studying Listeria monocytogenes pathogenicity
  • 2014
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : Frontiers Media SA. - 2235-2988. ; 4
  • Tidskriftsartikel (refereegranskat)abstract
    • Listeria monocytogenes is a bacterial pathogen capable of causing severe infections in humans, often with fatal outcomes. Many different animal models exist to study L. monocytogenes pathogenicity, and we have investigated the chicken embryo as an infection model: What are the benefits and possible drawbacks? We have compared a defined wild-type strain with its isogenic strains lacking well-characterized virulence factors. Our results show that wild-type L. monocytogenes, already at a relatively low infection dose (similar to 5 x 10(2) cfu), caused death of the chicken embryo within 36 h, in contrast to strains lacking the main transcriptional activator of virulence, PrfA, or the cytolysin LLO. Surprisingly, strains lacking the major adhesins InIA and InIB caused similar mortality as the wild-type strain. In conclusion, our results suggest that the chicken embryo is a practical model to study L. monocytogenes infections, especially when analyzing alternative virulence pathways independent of the InIA and InIB adhesins. However, the route of infection might be different from a human infection. The chicken embryo model and other Listeria infection models are discussed.
  •  
5.
  • Gripenland, Jonas, 1980- (författare)
  • Regulatory roles of two small RNAs in the human pathogen Listeria monocytogenes and the evaluation of an alternative infection model
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Listeriosis is a potentially lethal disease caused by the Gram-positive facultative intracellular pathogen Listeria monocytogenes (L.m.). L.m. is found ubiquitously in the environment and infects humans via ingestion of contaminated food. Contaminated products are usually derived from ruminants and involve dairy products and different kinds of processed meat. Listeriosis is a potential lifethreatening disease with a total mortality rate of 20-30 %. The development of listeriosis may lead to meningitis and septicemia or other invasive diseases. Pregnant women are of increased risk of developing listeriosis and a materno-fetal infection commonly lead to spontaneous abortion or still-birth. Regulation of gene expression, and specifically virulence gene expression, is essential for pathogenic bacteria to be equipped for handling counteractions from the host as well as thriving in the often hostile environment. In pathogenic Listeria, virulence gene expression is under the control of the global virulence gene regulator PrfA. The expression of prfA is highly regulated at the transcriptional, post-transcriptional and post- translational level. We have identified a novel type of post-transcriptional regulation of prfA-mRNA by a trans-acting riboswitch element (SreA). By binding to the leader region of prfA-mRNA, SreA negatively regulates the expression of prfA. To our knowledge, this is the first description of a cis-acting riboswitch capable of functioning as a small RNA in trans, regulating targets on distant sites. To date, there have been around 100 sRNAs identified in Listeria monocytogenes, but experimental data is still limited. We have characterized a blood induced sRNA, Rli38, which is important for full virulence during oral infection of mice. Our data suggest that Rli38 regulates the expression of at least two proteins; OppD (Oligopeptide transport protein) and IsdG (heme degrading monooxygenase). Both of these proteins have been implicated in the infectious cycle of L.m. We speculate that the virulence phenotype of an ∆rli38 mutant is possibly mediated through the effect of these proteins. L.m. is a complex pathogen, able to infect and replicate in a variety of organs and cause several distinctive forms of disease. These qualities of L.m. generate difficulties in simulating human listeriosis in animal models, as entailed by the multitude of models used in the field. In this work, we have evaluated the use of an alternative animal model in studying listeriosis. Our results describe the differentiated virulence potential of wildtype bacteria and a ∆prfA mutant strain in the chicken embryo by live/death screening and organ colonization. Large differences in mean time to death were found between wild-type and the ∆prfA strain and ∆prfA cells displayed a considerable defect in colonization of the embryonal liver. The results presented in this thesis show that the chicken embryo infection model is a valuable and convenient tool in studying end-outcome and organ colonization of Listeria monocytogenes. Taken together, this thesis describes the characterization of two previously unknown sRNAs in the human pathogen Listeria monocytogenes and the use of an alternative infection model for simulating listeriosis.
  •  
6.
  • Gripenland, Jonas, et al. (författare)
  • RNAs : regulators of bacterial virulence
  • 2010
  • Ingår i: Nature Reviews Microbiology. - : Springer Science and Business Media LLC. - 1740-1526 .- 1740-1534. ; 8:12, s. 857-866
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA-based pathways that regulate protein expression are much more widespread than previously thought. Regulatory RNAs, including 5' and 3' untranslated regions next to the coding sequence, cis-acting antisense RNAs and trans-acting small non-coding RNAs, are effective regulatory molecules that can influence protein expression and function in response to external cues such as temperature, pH and levels of metabolites. This Review discusses the mechanisms by which these regulatory RNAs, together with accessory proteins such as RNases, control the fate of mRNAs and proteins and how this regulation influences virulence in pathogenic bacteria.
  •  
7.
  • Loh, Edmund, 1981-, et al. (författare)
  • A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes
  • 2009
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 139:4, s. 770-779
  • Tidskriftsartikel (refereegranskat)abstract
    • Riboswitches are RNA elements acting in cis, controlling expression of their downstream genes through a metabolite-induced alteration of their secondary structure. Here, we demonstrate that two S-adenosylmethionine (SAM) riboswitches, SreA and SreB, can also function in trans and act as noncoding RNAs in Listeria monocytogenes. SreA and SreB control expression of the virulence regulator PrfA by binding to the 5´-untranslated region of its mRNA. Absence of the SAM riboswitches SreA and SreB increases the level of PrfA and virulence gene expression in L. monocytogenes. Thus, the impact of the SAM riboswitches on PrfA expression highlights a link between bacterial virulence and nutrient availability. Together, our results uncover an unexpected role for riboswitches and a distinct class of regulatory noncoding RNAs in bacteria.
  •  
8.
  • Loh, Edmund, 1981-, et al. (författare)
  • Control of Listeria monocytogenes virulence by 5´-untranslated RNA
  • 2006
  • Ingår i: Trends in Microbiology. - : Elsevier BV. - 0966-842X .- 1878-4380. ; 14:7, s. 294-298
  • Tidskriftsartikel (refereegranskat)abstract
    • The Gram-positive bacterium Listeria monocytogenes uses a wide range of virulence factors for its pathogenesis. Expression of five of these factors has previously been shown to be subjected to posttranscriptional regulation as a result of their long 5´-untranslated region (5´-UTR). We have investigated the presence of 5´-UTRs among the other known virulence genes and genes that encode putatively virulence-associated surface proteins. Our results strongly suggest that L. monocytogenes controls many of its virulence genes by a mechanism that involves the 5´-UTR. These findings further emphasize the importance of post-transcriptional control for L. monocytogenes virulence.
  •  
9.
  • Toledo-Arana, Alejandro, et al. (författare)
  • The Listeria transcriptional landscape from saprophytism to virulence
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 459:7249, s. 950-956
  • Tidskriftsartikel (refereegranskat)abstract
    • The bacterium Listeria monocytogenes is ubiquitous in the environment and can lead to severe food-borne infections. It has recently emerged as a multifaceted model in pathogenesis. However, how this bacterium switches from a saprophyte to a pathogen is largely unknown. Here, using tiling arrays and RNAs from wild-type and mutant bacteria grown in vitro, ex vivo and in vivo, we have analysed the transcription of its entire genome. We provide the complete Listeria operon map and have uncovered far more diverse types of RNAs than expected: in addition to 50 small RNAs (<500 nucleotides), at least two of which are involved in virulence in mice, we have identified antisense RNAs covering several open-reading frames and long overlapping 5' and 3' untranslated regions. We discovered that riboswitches can act as terminators for upstream genes. When Listeria reaches the host intestinal lumen, an extensive transcriptional reshaping occurs with a SigB-mediated activation of virulence genes. In contrast, in the blood, PrfA controls transcription of virulence genes. Remarkably, several non-coding RNAs absent in the non-pathogenic species Listeria innocua exhibit the same expression patterns as the virulence genes. Together, our data unravel successive and coordinated global transcriptional changes during infection and point to previously unknown regulatory mechanisms in bacteria.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy