SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grishin Nick V.) "

Sökning: WFRF:(Grishin Nick V.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Espeland, Marianne, et al. (författare)
  • Combining target enrichment and Sanger sequencing data to clarify the systematics of the diverse Neotropical butterfly subtribe Euptychiina (Nymphalidae, Satyrinae)
  • 2023
  • Ingår i: Systematic Entomology. - 0307-6970. ; 48:4, s. 498-570
  • Tidskriftsartikel (refereegranskat)abstract
    • The diverse, largely Neotropical subtribe Euptychiina is widely regarded as one of the most taxonomically challenging groups among all butterflies. Over the last two decades, morphological and molecular studies have revealed widespread paraphyly and polyphyly among genera, and a comprehensive, robust phylogenetic hypothesis is needed to build a firm generic classification to support ongoing taxonomic revisions at the species level. Here, we generated a dataset that includes sequences for up to nine nuclear genes and the mitochondrial COI ‘barcode’ for a total of 1280 specimens representing 449 described and undescribed species of Euptychiina and 39 out-groups, resulting in the most complete phylogeny for the subtribe to date. In combination with a recently developed genomic backbone tree, this dataset resulted in a topology with strong support for most branches. We recognize eight major clades that each contain two or more genera, together containing all but seven Euptychiina genera. We provide a summary of the taxonomy, diversity and natural history of each clade, and discuss taxonomic changes implied by the phylogenetic results. We describe nine new genera to accommodate 38 described species: Lazulina Willmott, Nakahara & Espeland, gen.n., Saurona Huertas & Willmott, gen.n., Argentaria Huertas & Willmott, gen.n., Taguaiba Freitas, Zacca & Siewert, gen.n., Xenovena Marín & Nakahara, gen.n., Deltaya Willmott, Nakahara & Espeland, gen.n., Modica Zacca, Casagrande & Willmott, gen.n., Occulta Nakahara & Willmott, gen.n., and Trico Nakahara & Espeland, gen.n. We also synonymize Nubila Viloria, Andrade & Henao, 2019 (syn.n.) with Splendeuptychia Forster, 1964, Macrocissia Viloria, Le Crom & Andrade, 2019 (syn.n.) with Satyrotaygetis Forster, 1964, and Rudyphthimoides Viloria, 2022 (syn.n.) with Malaveria Viloria & Benmesbah, 2020. Overall, we revised the generic placement of 79 species (74 new generic combinations and five revised combinations), and as a result all but six described species of Euptychiina are accommodated within 70 named, monophyletic genera. For all newly described genera, we provide illustrations of representative species, drawings of wing venation and male and (where possible) female genitalia, and distribution maps, and summarize the natural history of the genus. For three new monotypic genera, Occulta gen.n., Trico gen.n. and Xenovena gen.n. we provide a taxonomic revision with a review of the taxonomy of each species and data from examined specimens. We provide a revised synonymic list for Euptychiina containing 460 valid described species, 53 subspecies and 255 synonyms, including several new synonyms and reinstated species.
  •  
2.
  • Liu, Yanjie, et al. (författare)
  • The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes
  • 2008
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory Press (CSHL). - 0890-9369 .- 1549-5477. ; 22:8, s. 1051-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • The cellular and molecular mechanisms that underlie species-specific membrane fusion between male and female gametes remain largely unknown. Here, by use of gene discovery methods in the green alga Chlamydomonas, gene disruption in the rodent malaria parasite Plasmodium berghei, and distinctive features of fertilization in both organisms, we report discovery of a mechanism that accounts for a conserved protein required for gamete fusion. A screen for fusion mutants in Chlamydomonas identified a homolog of HAP2, an Arabidopsis sterility gene. Moreover, HAP2 disruption in Plasmodium blocked fertilization and thereby mosquito transmission of malaria. HAP2 localizes at the fusion site of Chlamydomonas minus gametes, yet Chlamydomonas minus and Plasmodium hap2 male gametes retain the ability, using other, species-limited proteins, to form tight prefusion membrane attachments with their respective gamete partners. Membrane dye experiments show that HAP2 is essential for membrane merger. Thus, in two distantly related eukaryotes, species-limited proteins govern access to a conserved protein essential for membrane fusion.
  •  
3.
  • Ning, Jue, et al. (författare)
  • Comparative genomics in Chlamydomonas and Plasmodium identifies an ancient nuclear envelope protein family essential for sexual reproduction in protists, fungi, plants, and vertebrates
  • 2013
  • Ingår i: Genes & Development. - : Cold Spring Harbor Laboratory Press (CSHL). - 0890-9369 .- 1549-5477. ; 27:10, s. 1198-1215
  • Tidskriftsartikel (refereegranskat)abstract
    • Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa.
  •  
4.
  • Yu, Hao, et al. (författare)
  • Association of an estrogen-sensitive Pax1-Col11a1-Mmp3 signaling axis with adolescent idiopathic scoliosis.
  • 2023
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 9,161 individuals with AIS and 80,731 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629_c.4004C>T; p.(Pro1335Leu); P=7.07e -11 , OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice ( Pax1 -/- ). In postnatal spines we found that Pax1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1 -/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in growth plate cells (GPCs) suppresses expression of Pax1 and of Mmp3 , encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1 P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 , or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in GPCs. These studies support a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1 - Col11a1 - Mmp3 signaling axis in the growth plate.
  •  
5.
  • Yu, Hao, et al. (författare)
  • Association of genetic variation in COL11A1 with adolescent idiopathic scoliosis
  • 2024
  • Ingår i: eLIFE. - : eLife Sciences Publications, Ltd. - 2050-084X. ; 12
  • Tidskriftsartikel (refereegranskat)abstract
    • Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy