SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grosse Ivo) "

Sökning: WFRF:(Grosse Ivo)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cavalli, Marco, et al. (författare)
  • Allele specific chromatin signals, 3D interactions, and motif predictions for immune and B cell related diseases
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Several Genome Wide Association Studies (GWAS) have reported variants associated to immune diseases. However, the identified variants are rarely the drivers of the associations and the molecular mechanisms behind the genetic contributions remain poorly understood. ChIP-seq data for TFs and histone modifications provide snapshots of protein-DNA interactions allowing the identification of heterozygous SNPs showing significant allele specific signals (AS-SNPs). AS-SNPs can change a TF binding site resulting in altered gene regulation and are primary candidates to explain associations observed in GWAS and expression studies. We identified 17,293 unique AS-SNPs across 7 lymphoblastoid cell lines. In this set of cell lines we interrogated 85% of common genetic variants in the population for potential regulatory effect and we identified 237 AS-SNPs associated to immune GWAS traits and 714 to gene expression in B cells. To elucidate possible regulatory mechanisms we integrated long-range 3D interactions data to identify putative target genes and motif predictions to identify TFs whose binding may be affected by AS-SNPs yielding a collection of 173 AS-SNPs associated to gene expression and 60 to B cell related traits. We present a systems strategy to find functional gene regulatory variants, the TFs that bind differentially between alleles and novel strategies to detect the regulated genes.
  •  
2.
  • Doublet, Vincent, et al. (författare)
  • Unity in defence : honeybee workers exhibit conserved molecular responses to diverse pathogens
  • 2017
  • Ingår i: BMC Genomics. - : BIOMED CENTRAL LTD. - 1471-2164. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses.Results: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses.Conclusions: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
  •  
3.
  • Fischer, Anja, et al. (författare)
  • Computational Recognition of RNA Splice Sites by Exact Algorithms for the Quadratic Traveling Salesman Problem
  • 2015
  • Ingår i: Computation. - : MDPI AG. - 2079-3197. ; 3:2, s. 285-298
  • Tidskriftsartikel (refereegranskat)abstract
    • One fundamental problem of bioinformatics is the computational recognition of DNA and RNA binding sites. Given a set of short DNA or RNA sequences of equal length such as transcription factor binding sites or RNA splice sites, the task is to learn a pattern from this set that allows the recognition of similar sites in another set of DNA or RNA sequences. Permuted Markov (PM) models and permuted variable length Markov (PVLM) models are two powerful models for this task, but the problem of finding an optimal PM model or PVLM model is NP-hard. While the problem of finding an optimal PM model or PVLM model of order one is equivalent to the traveling salesman problem (TSP), the problem of finding an optimal PM model or PVLM model of order two is equivalent to the quadratic TSP (QTSP). Several exact algorithms exist for solving the QTSP, but it is unclear if these algorithms are capable of solving QTSP instances resulting from RNA splice sites of at least 150 base pairs in a reasonable time frame. Here, we investigate the performance of three exact algorithms for solving the QTSP for ten datasets of splice acceptor sites and splice donor sites of five different species and find that one of these algorithms is capable of solving QTSP instances of up to 200 base pairs with a running time of less than two days.
  •  
4.
  • Fischer, Anja, et al. (författare)
  • Exact algorithms and heuristics for the Quadratic Traveling Salesman Problem with an application in bioinformatics
  • 2014
  • Ingår i: Discrete Applied Mathematics. - : Elsevier BV. - 0166-218X .- 1872-6771. ; 166, s. 97-114
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we introduce an extension of the Traveling Salesman Problem (TSP), which is motivated by an important application in bioinformatics. In contrast to the TSP the costs do not only depend on each pair of two nodes traversed in succession in a cycle but on each triple of nodes traversed in succession. This problem can be formulated as optimizing a quadratic objective function over the traveling salesman polytope, so we call the combinatorial optimization problem quadratic TSP (QTSP). Besides its application in bioinformatics, the QTSP is a generalization of the Angular-Metric TSP and the TSP with reload costs. Apart from the TSP with quadratic cost structure we also consider the related Cycle Cover Problem with quadratic objective function (QCCP). In this work we present three exact solution approaches and several heuristics for the QTSP. The first exact approach is based on a polynomial transformation to a TSP, which is then solved by standard software. The second one is a branch-and-bound algorithm that relies on combinatorial bounds. The best exact algorithm is a branch-and-cut approach based on an integer programming formulation with problem-specific cutting planes. All heuristical approaches are extensions of classic heuristics for the TSP. Finally, we compare all algorithms on real-world instances from bioinformatics and on randomly generated instances. In these tests, the branch-and-cut approach turned out to be superior for solving the real-world instances from bioinformatics. Instances with up to 100 nodes could be solved to optimality in about ten minutes.
  •  
5.
  • Leebens-Mack, James H., et al. (författare)
  • One thousand plant transcriptomes and the phylogenomics of green plants
  • 2019
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 574:7780, s. 679-
  • Tidskriftsartikel (refereegranskat)abstract
    • Green plants (Viridiplantae) include around 450,000-500,000 species(1,2) of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life.
  •  
6.
  • Madrigal, Pedro, et al. (författare)
  • Revamping Space-omics in Europe
  • 2020
  • Ingår i: CELL SYSTEMS. - : Elsevier BV. - 2405-4712. ; 11:6, s. 555-556
  • Tidskriftsartikel (refereegranskat)
  •  
7.
  • Mohammed Taha, Hiba, et al. (författare)
  • The NORMAN Suspect List Exchange (NORMAN-SLE) : facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry
  • 2022
  • Ingår i: Environmental Sciences Europe. - : Springer. - 2190-4707 .- 2190-4715. ; 34:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).
  •  
8.
  • Seifert, Michael, et al. (författare)
  • Exploiting prior knowledge and gene distances in the analysis of tumor expression profiles with extended Hidden Markov Models.
  • 2011
  • Ingår i: Bioinformatics (Oxford, England). - : Oxford University Press (OUP). - 1367-4811 .- 1367-4803. ; 27:12, s. 1645-52
  • Tidskriftsartikel (refereegranskat)abstract
    • Changes in gene expression levels play a central role in tumors. Additional information about the distribution of gene expression levels and distances between adjacent genes on chromosomes should be integrated into the analysis of tumor expression profiles.We use a Hidden Markov Model with distance-scaled transition matrices (DSHMM) to incorporate chromosomal distances of adjacent genes on chromosomes into the identification of differentially expressed genes in breast cancer. We train the DSHMM by integrating prior knowledge about potential distributions of expression levels of differentially expressed and unchanged genes in tumor. We find that especially the combination of these data and to a lesser extent the modeling of distances between adjacent genes contribute to a substantial improvement of the identification of differentially expressed genes in comparison to other existing methods. This performance benefit is also supported by the identification of genes well known to be associated with breast cancer. That suggests applications of DSHMMs for screening of other tumor expression profiles.The DSHMM is available as part of the open-source Java library Jstacs (www.jstacs.de/index.php/DSHMM).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy