SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Groth Petra) "

Sökning: WFRF:(Groth Petra)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Nina M. S., et al. (författare)
  • Targeting PFKFB3 radiosensitizes cancer cells and suppresses homologous recombination
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • The glycolytic PFKFB3 enzyme is widely overexpressed in cancer cells and an emerging anticancer target. Here, we identify PFKFB3 as a critical factor in homologous recombination (HR) repair of DNA double-strand breaks. PFKFB3 rapidly relocates into ionizing radiation (IR)-induced nuclear foci in an MRN-ATM-gamma H2AX-MDC1-dependent manner and co-localizes with DNA damage and HR repair proteins. PFKFB3 relocalization is critical for recruitment of HR proteins, HR activity, and cell survival upon IR. We develop KAN0438757, a small molecule inhibitor that potently targets PFKFB3. Pharmacological PFKFB3 inhibition impairs recruitment of ribonucleotide reductase M2 and deoxynucleotide incorporation upon DNA repair, and reduces dNTP levels. Importantly, KAN0438757 induces radiosensitization in transformed cells while leaving non-transformed cells unaffected. In summary, we identify a key role for PFKFB3 enzymatic activity in HR repair and present KAN0438757, a selective PFKFB3 inhibitor that could potentially be used as a strategy for the treatment of cancer.
  •  
2.
  • Beck, Halfdan, et al. (författare)
  • Regulators of cyclin-dependent kinases are crucial for maintaining genome integrity in S phase
  • 2010
  • Ingår i: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 188:5, s. 629-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Maintenance of genome integrity is of critical importance to cells. To identify key regulators of genomic integrity, we screened a human cell line with a kinome small interfering RNA library. WEE1, a major regulator of mitotic entry, and CHK1 were among the genes identified. Both kinases are important negative regulators of CDK1 and -2. Strikingly, WEE1 depletion rapidly induced DNA damage in S phase in newly replicated DNA, which was accompanied by a marked increase in single-stranded DNA. This DNA damage is dependent on CDK1 and -2 as well as the replication proteins MCM2 and CDT1 but not CDC25A. Conversely, DNA damage after CHK1 inhibition is highly dependent on CDC25A. Furthermore, the inferior proliferation of CHK1-depleted cells is improved substantially by codepletion of CDC25A. We conclude that the mitotic kinase WEE1 and CHK1 jointly maintain balanced cellular control of Cdk activity during normal DNA replication, which is crucial to prevent the generation of harmful DNA lesions during replication.
  •  
3.
  • Elvers, Ingegerd, et al. (författare)
  • UV stalled replication forks restart by re-priming in human fibroblasts
  • 2011
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 39:16, s. 7049-7057
  • Tidskriftsartikel (refereegranskat)abstract
    • Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks use an active restart mechanism or rescue replication by new origin firing. Using the DNA fiber assay, we find to our surprise no evidence that UV-damaged replication forks are arrested and only detect a slightly reduced fork speed on a UV-damaged template. Interestingly, no evidence for UV-induced fork stalling was observed even in translesion synthesis defective, Polηmut cells. In contrast, using an assay to measure DNA molecule elongation at the fork, we observe that DNA elongation is severely blocked, particularly in UV-damaged Polηmut cells. In conclusion, these data suggest that UV-blocked replication forks restart effectively through re-priming. If left unfilled, the gap behind a re-primed fork may collapse into a DNA double-strand break that is repaired by a recombination pathway, similar to the fate of replication forks collapsed after hydroxyurea treatment.
  •  
4.
  •  
5.
  • Groth, Petra, et al. (författare)
  • Homologous recombination repairs secondary replication induced dna double strand breaks after ionizing radiation
  • 2012
  • Ingår i: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 40:14, s. 6585-6594
  • Tidskriftsartikel (refereegranskat)abstract
    • Ionizing radiation (IR) produces direct two-ended DNA double-strand breaks (DSBs) primarily repaired by non-homologous end joining (NHEJ). It is, however, well established that homologous recombination (HR) is induced and required for repair of a subset of DSBs formed following IR. Here, we find that HR induced by IR is drastically reduced when post-DNA damage replication is inhibited in mammalian cells. Both IR-induced RAD51 foci and HR events in the hprt gene are reduced in the presence of replication polymerase inhibitor aphidicolin (APH). Interestingly, we also detect reduced IR-induced toxicity in HR deficient cells when inhibiting post-DNA damage replication. When studying DSB formation following IR exposure, we find that apart from the direct DSBs the treatment also triggers formation of secondary DSBs peaking at 7-9 h after exposure. These secondary DSBs are restricted to newly replicated DNA and abolished by inhibiting post-DNA damage replication. Further, we find that IR-induced RAD51 foci are decreased by APH only in cells replicating at the time of IR exposure, suggesting distinct differences between IR-induced HR in S- and G2-phases of the cell cycle. Altogether, our data indicate that secondary replication-associated DSBs formed following exposure to IR are major substrates for IR-induced HR repair.
  •  
6.
  •  
7.
  •  
8.
  • Groth, Petra, et al. (författare)
  • Methylated DNA Causes a Physical Block to Replication Forks Independently of Damage Signalling, O-6-Methylguanine or DNA Single-Strand Breaks and Results in DNA Damage
  • 2010
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 402:1, s. 70-82
  • Tidskriftsartikel (refereegranskat)abstract
    • Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O-6-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-M-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced gamma H2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks.
  •  
9.
  • Groth, Petra, 1982- (författare)
  • Replication Dynamics in the DNA Damage Response
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Faithful DNA replication is essential and the induction of replication stress may have profound effects on genomic integrity. This is demonstrated by the formation of DNA double strand breaks (DSBs), considered to be the most toxic DNA lesions, at stalled replication forks. Homologous recombination (HR) has been shown to be involved in the replication stress response and has been suggested for stabilisation, restart and repair of stalled replication forks. However, the HR mechanisms induced by replication stress are still, to a major part, unknown. The present thesis focuses on investigating replication patterns following the induction of replication stress. Further, the consequences of stressed replication are studied by detection of DSB formation and characterisation of HR in mammalian cells. Here, we have identified WEE1, a regulator of mitotic entry, as a factor required to maintain correct replication. Depletion of WEE1 results in the formation of DSBs specifically in newly replicated DNA, as visualised in a modified pulse field electrophoresis assay. We were also able to detect formation of replication-associated secondary DSBs following treatment with ionizing radiation (IR). These DSBs were further demonstrated as major substrates for IR induced HR. Using the DNA fibre technique we investigated the effect of DNA alkylating agents on replication. We found that DNA methylations pose direct physical blocks to progressing replication forks causing them to stall in a checkpoint independent manner. Furthermore, we studied restart kinetics following methylation blocked replication and identified a distinct restart mechanism for blocked replication forks independent of new origin firing and HR. In conclusion, our findings increase the knowledge of replication dynamics following perturbed replication and further clarify the role of HR following IR induced damage and DNA alkylation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy