SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gruber Samira) "

Sökning: WFRF:(Gruber Samira)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gruber, Samira, et al. (författare)
  • Comparison of dimensional accuracy and tolerances of powder bed based and nozzle based additive manufacturing processes
  • 2020
  • Ingår i: Journal of laser applications. - : American Institute of Physics (AIP). - 1042-346X .- 1938-1387. ; 32:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Additive manufacturing processes have the potential to produce near-net shaped complex final parts in various industries such as aerospace, medicine, or automotive. Powder bed based and nozzle based processes like laser metal deposition (LMD), laser powder bed fusion (LPBF), and electron beam melting (EBM) are commercially available, but selecting the most suitable process for a specific application remains difficult and mainly depends on the individual know-how within a certain company. Factors such as the material used, part dimension, geometrical features, as well as tolerance requirements contribute to the overall manufacturing costs that need to be economically reasonable compared to conventional processes. Within this contribution, the quantitative analysis of basic geometrical features such as cylinders, thin walls, holes, and cooling channels of a special designed benchmark demonstrator manufactured by LMD; LPBF and EBM are presented to compare the geometrical accuracy within and between these processes to verify existing guidelines, connect the part quality to the process parameters, and demonstrate process-specific limitations. The fabricated specimens are investigated in a comprehensive manner with 3D laser scanning and CT scanning with regard to dimensional and geometrical accuracy of outer and inner features. The obtained results will be discussed and achievable as-built tolerances for assessed demonstrator parts will be classified according to general tolerance classes described [DIN ISO 2768-1,Allgemeintoleranzen-Teil 1: Toleranzen fur Langen- und Winkelmasse ohne einzelne Toleranzeintragung(1991). Accessed 26 February 2018; DIN ISO 2768-2,Allgemeintoleranzen-Teil 2: Toleranzen fur Form und Lage ohne einzelne Toleranzeintragung(1991). Accessed 26 February 2018].
  •  
2.
  • Gruber, Samira, et al. (författare)
  • Physical and Geometrical Properties of Additively Manufactured Pure Copper Samples Using a Green Laser Source
  • 2021
  • Ingår i: Materials. - : MDPI. - 1996-1944. ; 14:13
  • Tidskriftsartikel (refereegranskat)abstract
    • So far, copper has been difficult to process via laser powder bed fusion due to low absorption with the frequently used laser systems in the infrared wavelength range. However, green laser systems have emerged recently and offer new opportunities in processing highly reflective materials like pure copper through higher absorptivity. In this study, pure copper powders from two suppliers were tested using the same machine parameter sets to investigate the influence of the powder properties on the material properties such as density, microstructure, and electrical conductivity. Samples of different wall thicknesses were investigated with the eddy-current method to analyze the influence of the sample thickness and surface quality on the measured electrical conductivity. The mechanical properties in three building directions were investigated and the geometrical accuracy of selected geometrical features was analyzed using a benchmark geometry. It could be shown that the generated parts have a relative density of above 99.95% and an electrical conductivity as high as 100% International Annealed Copper Standard (IACS) for both powders could be achieved. Furthermore, the negative influence of a rough surface on the measured eddy-current method was confirmed.
  •  
3.
  • Gruber, Samira, et al. (författare)
  • Process development for laser powder bed fusion of GRCop-42 using a 515 nm laser source
  • 2023
  • Ingår i: Journal of laser applications. - : Laser Institute of America. - 1042-346X .- 1938-1387. ; 35:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper is widely used in high heat flux and electrical applications because of its excellent electrical and thermal conductivity properties. Alloying elements such as chromium or nickel are added to strengthen the material, especially for higher temperatures. Cu4Cr2Nb, also known as GRCop-42, is a dispersion-strengthened copper-chromium-niobium alloy developed by NASA for high-temperature applications with high thermal and mechanical stresses such as rocket engines. Additive manufacturing (AM) enables applications with complex functionalized geometries and is particularly promising in the aerospace industry. In this contribution, a parametric study was performed for GRCop-42 and the AM process laser powder bed fusion (PBF-LB/M) using a green laser source for two-layer thicknesses of 30 and 60 µm. Density, electrical conductivity, hardness, microstructure, and static mechanical properties were analyzed. Various heat treatments ranging from 400 to 1000 °C and 30 min to 4 h were tested to increase the electrical conductivity and hardness. For both layer thicknesses, dense parameter sets could be obtained with resulting relative densities above 99.8%. Hardness and electrical conductivity could be tailored in the range of 103-219 HV2 and 24%-88% International Annealed Copper Standard (IACS) depending on the heat treatment. The highest ultimate tensile strength (UTS) obtained was 493 MPa. An aging temperature of 700 °C for 30 min showed the best combination of room temperature properties such as electrical conductivity of 83.76%IACS, UTS of 481 MPa, elongation at break (A) at 24%, and hardness of 125 HV2.
  •  
4.
  • Selbmann, Alex, et al. (författare)
  • Mechanical and geometrical characterization of additively manufactured INCONEL® 718 porous structures for transpiration cooling in space applications
  • 2022
  • Ingår i: Laser 3D Manufacturing IX. - : SPIE - International Society for Optical Engineering.
  • Konferensbidrag (refereegranskat)abstract
    • The need for ever increasing process temperatures during combustion in space engines and gas turbines to increase efficiency requires the use of thermally resistant materials and novel cooling solutions. For the improved cooling of thermally highly stressed components, the technology of transpiration cooling, in which a cooling medium flows through a porous structure, has been known for a long time. Additive manufacturing and, in particular, laser powder bed fusion (LPBF) offers great potential for the near-net-shape production of porous structures compared to complex conventional manufacturing. In this contribution, porous structures were manufactured and the process parameters were optimized to increase the quality of the pores. The study discloses an adapted exposure parameter set for the improved fabrication of cylindrical pores in an INCONEL® 718 material and the associated mechanical properties of porous and dense components.
  •  
5.
  • Selbmann, Alex, et al. (författare)
  • Process qualification, additive manufacturing, and postprocessing of a hydrogen peroxide/kerosene 6 kN aerospike breadboard engine
  • 2024
  • Ingår i: Journal of laser applications. - : Laser Institute of America. - 1042-346X .- 1938-1387. ; 36:1
  • Tidskriftsartikel (refereegranskat)abstract
    • This contribution addresses the complete process chain of an annular aerospike breadboard engine fabricated by laser powder bed fusion using the nickel-based superalloy Inconel® 718. In order to qualify the material and process for this high-temperature application, an extensive material characterization campaign including density and roughness measurements, as well as tensile tests at room temperature, 700, and 900 °C, was conducted. In addition, various geometric features such as triangles, ellipses, and circular shapes were generated to determine the maximum unsupported overhang angle and geometrical accuracy. The results were taken into account in the design maturation of the manifold and the cooling channels of the aerospike breadboard engine. Postprocessing included heat treatment to increase mechanical properties, milling, turning, and eroding of interfaces to fulfill the geometrical tolerances, thermal barrier coating of thermally stressed surfaces for better protection of thermal loads, and laser welding of spike and shroud for the final assembly as well as quality assurance. This contribution goes beyond small density cubes and tensile samples and offers details on the iterations necessary for the successful printing of large complex shaped functional parts. The scientific question is how to verify the additive manufacturing process through tensile testing, simulation, and design iterations for complex geometries and reduce the number of failed prints.
  •  
6.
  • Torims, Toms, et al. (författare)
  • First proof-of-concept prototype of an additive manufactured radio frequency quadrupole
  • 2021
  • Ingår i: Instruments. - : MDPI. - 2410-390X. ; 5:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Continuous developments in additive manufacturing (AM) technology are opening up opportunities in novel machining, and improving design alternatives for modern particle accelerator components. One of the most critical, complex, and delicate accelerator elements to manufacture and assemble is the radio frequency quadrupole (RFQ) linear accelerator, which is used as an injector for all large modern proton and ion accelerator systems. For this reason, the RFQ has been selected by a wide European collaboration participating in the AM developments of the I.FAST (Innovation Fostering in Accelerator Science and Technology) Horizon 2020 project. The RFQ is as an excellent candidate to show how sophisticated pure copper accelerator components can be manufactured by AM and how their functionalities can be boosted by this evolving technology. To show the feasibility of the AM process, a prototype RFQ section has been designed, corresponding to one-quarter of a 750 MHz 4-vane RFQ, which was optimised for production with state-of-the-art laser powder bed fusion (L-PBF) technology, and then manufactured in pure copper. To the best of the authors’ knowledge, this is the first RFQ section manufactured in the world by AM. Subsequently, geometrical precision and surface roughness of the prototype were measured. The results obtained are encouraging and confirm the feasibility of AM manufactured high-tech accelerator components. It has been also confirmed that the RFQ geometry, particularly the critical electrode modulation and the complex cooling channels, can be successfully realised thanks to the opportunities provided by the AM technology. Further prototypes will aim to improve surface roughness and to test vacuum properties. In parallel, laboratory measurements will start to test and improve the voltage holding properties of AM manufactured electrode samples.
  •  
7.
  • Willner, Robin, et al. (författare)
  • Potential and challenges of additive manufacturing for topology optimized spacecraft structures
  • 2020
  • Ingår i: Journal of laser applications. - : American Institute of Physics (AIP). - 1042-346X .- 1938-1387. ; 32:3
  • Tidskriftsartikel (refereegranskat)abstract
    • This study focused on the potential of topology optimization (TO) for metallic tertiary structures of spacecrafts produced by the additive manufacturing (AM) technique laser powder bed fusion. First, a screening of existing conventionally manufactured products was carried out to evaluate the benefits of a redesign concerning product performance and the associated economic impact. As a result of the study, the most suitable demonstrator was selected. This reference structure was redesigned by TO taking into consideration the AM process constraints. Another major aim of this work was to evaluate the possibilities and challenges of AM (accuracies, surface quality, process parameters, postmachining, and mechanical properties) in addition to the redesign process. A comprehensive approach was implemented including detailed analysis of the powder, mechanical properties, in-process parameters, and nondestructive inspection (NDI). All measured values were used for a back loop to the design process, thereby providing a final robust redesign. Finally, the fine-tuned demonstrator was built up in an iterative process. The parts were tested under representative conditions for the application to verify the performance. The demonstrator qualification test campaign contained thermal cycling, vibration testing, static load testing, and NDI. Thus, an improvement in technology readiness level up to "near flight qualified" was reached.
  •  
8.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (1)
Typ av innehåll
refereegranskat (8)
Författare/redaktör
Kelly, Daniel (1)
Bengtsson-Palme, Joh ... (1)
Nilsson, Henrik (1)
Kelly, Ryan (1)
Li, Ying (1)
Moore, Matthew D. (1)
visa fler...
Liu, Fang (1)
Zhang, Yao (1)
Jin, Yi (1)
Raza, Ali (1)
Rafiq, Muhammad (1)
Zhang, Kai (1)
Khatlani, T (1)
Kahan, Thomas (1)
Sörelius, Karl, 1981 ... (1)
Batra, Jyotsna (1)
Roobol, Monique J (1)
Backman, Lars (1)
Yan, Hong (1)
Schmidt, Axel (1)
Lorkowski, Stefan (1)
Thrift, Amanda G. (1)
Zhang, Wei (1)
Hammerschmidt, Sven (1)
Patil, Chandrashekha ... (1)
Wang, Jun (1)
Pollesello, Piero (1)
Conesa, Ana (1)
El-Esawi, Mohamed A. (1)
Zhang, Weijia (1)
Li, Jian (1)
Marinello, Francesco (1)
Frilander, Mikko J. (1)
Wei, Pan (1)
Badie, Christophe (1)
Zhao, Jing (1)
Li, You (1)
Bansal, Abhisheka (1)
Rahman, Proton (1)
Parchi, Piero (1)
Polz, Martin (1)
Ijzerman, Adriaan P. (1)
Subhash, Santhilal, ... (1)
Quinn, Terence J. (1)
Uversky, Vladimir N. (1)
Gemmill, Alison (1)
Zhang, Yi (1)
Meule, Adrian (1)
Vohl, Marie-Claude (1)
Grimm, Dominik G. (1)
visa färre...
Lärosäte
Luleå tekniska universitet (7)
Göteborgs universitet (1)
Uppsala universitet (1)
Högskolan i Halmstad (1)
Stockholms universitet (1)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (8)
Forskningsämne (UKÄ/SCB)
Teknik (7)
Naturvetenskap (1)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy