SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grubisic Cabo Antonija) "

Sökning: WFRF:(Grubisic Cabo Antonija)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Balog, Richard, et al. (författare)
  • Hydrogen interaction with graphene on Ir(1 1 1) : A combined intercalation and functionalization study
  • 2019
  • Ingår i: Journal of Physics Condensed Matter. - 0953-8984. ; 31:8
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate a procedure for obtaining a H-intercalated graphene layer that is found to be chemically decoupled from the underlying metal substrate. Using high-resolution x-ray photoelectron spectroscopy and scanning tunneling microscopy techniques, we reveal that the hydrogen intercalated graphene is p-doped by about 0.28 eV, but also identify structures of interfacial hydrogen. Furthermore, we investigate the reactivity of the decoupled layer towards atomic hydrogen and vibrationally excited molecular hydrogen and compare these results to the case of non-intercalated graphene. We find distinct differences between the two. Finally, we discuss the possibility to form graphane clusters on an iridium substrate by combined intercalation and H atom exposure experiments.
  •  
2.
  • Grubisic-Cabo, Antonija, et al. (författare)
  • In Situ Exfoliation Method of Large-Area 2D Materials
  • 2023
  • Ingår i: Advanced Science. - : Wiley. - 2198-3844. ; 10:22
  • Tidskriftsartikel (refereegranskat)abstract
    • 2D materials provide a rich platform to study novel physical phenomena arising from quantum confinement of charge carriers. Many of these phenomena are discovered by surface sensitive techniques, such as photoemission spectroscopy, that work in ultra-high vacuum (UHV). Success in experimental studies of 2D materials, however, inherently relies on producing adsorbate-free, large-area, high-quality samples. The method that yields 2D materials of highest quality is mechanical exfoliation from bulk-grown samples. However, as this technique is traditionally performed in a dedicated environment, the transfer of samples into vacuum requires surface cleaning that might diminish the quality of the samples. In this article, a simple method for in situ exfoliation directly in UHV is reported, which yields large-area, single-layered films. Multiple metallic and semiconducting transition metal dichalcogenides are exfoliated in situ onto Au, Ag, and Ge. The exfoliated flakes are found to be of sub-millimeter size with excellent crystallinity and purity, as supported by angle-resolved photoemission spectroscopy, atomic force microscopy, and low-energy electron diffraction. The approach is well-suited for air-sensitive 2D materials, enabling the study of a new suite of electronic properties. In addition, the exfoliation of surface alloys and the possibility of controlling the substrate-2D material twist angle is demonstrated.
  •  
3.
  • Grubisic-Cabo, Antonija, et al. (författare)
  • Magnesium-intercalated graphene on SiC : Highly n-doped air-stable bilayer graphene at extreme displacement fields
  • 2021
  • Ingår i: Applied Surface Science. - : Elsevier BV. - 0169-4332 .- 1873-5584. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • We use angle-resolved photoemission spectroscopy to investigate the electronic structure of bilayer graphene at high n-doping and extreme displacement fields, created by intercalating epitaxial monolayer graphene on silicon carbide with magnesium to form quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide. Angle-resolved photoemission spectroscopy reveals that upon magnesium intercalation, the single massless Dirac band of epitaxial monolayer graphene is transformed into the characteristic massive double-band Dirac spectrum of quasi-freestanding bilayer graphene. Analysis of the spectrum using a simple tight binding model indicates that magnesium intercalation results in an n-type doping of 2.1 x 10(14) cm(-2) and creates an extremely high displacement field of 2.6 V/nm, thus opening a considerable gap of 0.36 eV at the Dirac point. This is further confirmed by density-functional theory calculations for quasi-freestanding bilayer graphene on magnesium-terminated silicon carbide, which show a similar doping level, displacement field and bandgap. Finally, magnesium-intercalated samples are surprisingly robust to ambient conditions; no significant changes in the electronic structure are observed after 30 min exposure to air.
  •  
4.
  • Guo, Qinda, et al. (författare)
  • A narrow bandwidth extreme ultra-violet light source for time- and angle-resolved photoemission spectroscopy
  • 2022
  • Ingår i: Structural Dynamics. - : AIP Publishing. - 2329-7778. ; 9:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present a high repetition rate, narrow bandwidth, extreme ultraviolet photon source for time- and angle-resolved photoemission spectroscopy. The narrow bandwidth pulses Δ E = 9, 14, and 18 meV for photon energies h ν = 10.8, 18.1, and 25.3 eV are generated through high harmonic generation using ultra-violet drive pulses with relatively long pulse lengths (461 fs). The high harmonic generation setup employs an annular drive beam in tight focusing geometry at a repetition rate of 250 kHz. Photon energy selection is provided by a series of selectable multilayer bandpass mirrors and thin film filters, thus avoiding any time broadening introduced by single grating monochromators. A two stage optical-parametric amplifier provides < 100 fs tunable pump pulses from 0.65 μm to 9 μm. The narrow bandwidth performance of the light source is demonstrated through angle-resolved photoemission measurements on a series of quantum materials, including high-temperature superconductor Bi-2212, WSe2, and graphene. 
  •  
5.
  • Guo, Qinda, et al. (författare)
  • Efficient low-density grating setup for monochromatization of XUV ultrafast light sources
  • 2023
  • Ingår i: Optics Express. - : Optica Publishing Group. - 1094-4087. ; 31:5, s. 8914-8926
  • Tidskriftsartikel (refereegranskat)abstract
    • Ultrafast light sources have become an indispensable tool to access and understand transient phenomenon in material science. However, a simple and easy-to-implement method for harmonic selection, with high transmission efficiency and pulse duration conservation, is still a challenge. Here we showcase and compare two approaches for selecting the desired harmonic from a high harmonic generation source while achieving the above goals. The first approach is the combination of extreme ultraviolet spherical mirrors with transmission filters and the second approach uses a normal-incidence spherical grating. Both solutions target timeand angle-resolved photoemission spectroscopy with photon energies in the 10-20 eV range but are relevant for other experimental techniques as well. The two approaches for harmonic selection are characterized in terms of focusing quality, photon flux, and temporal broadening. It is demonstrated that a focusing grating is able to provide much higher transmission as compared to the mirror+filter approach (3.3 times higher for 10.8 eV and 12.9 times higher for 18.1 eV), with only a slight temporal broadening (6.8% increase) and a somewhat larger spot size (similar to 30% increase). Overall, our study establishes an experimental perspective on the trade-off between a single grating normal incidence monochromator design and the use of filters. As such, it provides a basis for selecting the most appropriate approach in various fields where an easy-to-implement harmonic selection from high harmonic generation is needed.
  •  
6.
  • Jørgensen, Jakob Holm, et al. (författare)
  • Symmetry-Driven Band Gap Engineering in Hydrogen Functionalized Graphene
  • 2016
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-0851 .- 1936-086X. ; 10:12, s. 10798-10807
  • Tidskriftsartikel (refereegranskat)abstract
    • Band gap engineering in hydrogen functionalized graphene is demonstrated by changing the symmetry of the functionalization structures. Small differences in hydrogen adsorbate binding energies on graphene on Ir(111) allow tailoring of highly periodic functionalization structures favoring one distinct region of the moiré supercell. Scanning tunneling microscopy and X-ray photoelectron spectroscopy measurements show that a highly periodic hydrogen functionalized graphene sheet can thus be prepared by controlling the sample temperature (Ts) during hydrogen functionalization. At deposition temperatures of Ts = 645 K and above, hydrogen adsorbs exclusively on the HCP regions of the graphene/Ir(111) moiré structure. This finding is rationalized in terms of a slight preference for hydrogen clusters in the HCP regions over the FCC regions, as found by density functional theory calculations. Angle-resolved photoemission spectroscopy measurements demonstrate that the preferential functionalization of just one region of the moiré supercell results in a band gap opening with very limited associated band broadening. Thus, hydrogenation at elevated sample temperatures provides a pathway to efficient band gap engineering in graphene via the selective functionalization of specific regions of the moiré structure.
  •  
7.
  • Kyhl, Line, et al. (författare)
  • Exciting H2 Molecules for Graphene Functionalization
  • 2017
  • Ingår i: ACS Nano. - : American Chemical Society (ACS). - 1936-086X .- 1936-0851.
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen functionalization of graphene by exposure to vibrationally excited H2 molecules is investigated by combined scanning tunneling microscopy, high-resolution electron energy loss spectroscopy, X-ray photoelectron spectroscopy measurements, and density functional theory calculations. The measurements reveal that vibrationally excited H2 molecules dissociatively adsorb on graphene on Ir(111) resulting in nanopatterned hydrogen functionalization structures. Calculations demonstrate that the presence of the Ir surface below the graphene lowers the H2 dissociative adsorption barrier and allows for the adsorption reaction at energies well below the dissociation threshold of the H–H bond. The first reacting H2 molecule must contain considerable vibrational energy to overcome the dissociative adsorption barrier. However, this initial adsorption further activates the surface resulting in reduced barriers for dissociative adsorption of subsequent H2 molecules. This enables functionalization by H2 molecules with lower vibrational energy, yielding an avalanche effect for the hydrogenation reaction. These results provide an example of a catalytically active graphene-coated surface and additionally set the stage for a re-interpretation of previous experimental work involving elevated H2 background gas pressures in the presence of hot filaments.
  •  
8.
  • Majchrzak, Paulina, et al. (författare)
  • Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors
  • 2021
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.5 eV between our systems. The transient conduction band signals decay on a sub-50 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe a fast timescale on the order of 170 fs, followed by a slow dynamics for the conduction band decay in MoS2. These timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.
  •  
9.
  • Polley, Craig M., et al. (författare)
  • Fragility of the Dirac Cone Splitting in Topological Crystalline Insulator Heterostructures
  • 2018
  • Ingår i: ACS Nano. - : AMER CHEMICAL SOC. - 1936-0851 .- 1936-086X. ; 12:1, s. 617-626
  • Tidskriftsartikel (refereegranskat)abstract
    • The "double Dirac cone" 2D topological interface states found on the (001) faces of topological crystalline insulators such as Pb1-xSnxSe feature degeneracies located away from time reversal invariant momenta and are a manifestation of both mirror symmetry protection and valley interactions. Similar shifted degeneracies in 1D interface states have been highlighted as a potential basis for a topological transistor, but realizing such a device will require a detailed understanding of the intervalley physics involved. In addition, the operation of this or similar devices outside of ultrahigh vacuum will require encapsulation, and the consequences of this for the topological interface state must be understood. Here we address both topics for the case of 2D surface states using angle-resolved photoemission spectroscopy. We examine bulk Pb1-xSnxSe(001) crystals overgrown with PbSe, realizing trivial/topological heterostructures. We demonstrate that the valley interaction that splits the two Dirac cones at each (X) over bar is extremely sensitive to atomic-scale details of the surface, exhibiting non-monotonic changes as PbSe deposition proceeds. This includes an apparent total collapse of the splitting for sub-monolayer coverage, eliminating the Lifshitz transition. For a large overlayer thickness we observe quantized PbSe states, possibly reflecting a symmetry confinement mechanism at the buried topological interface.
  •  
10.
  • Rost, Hakon, I, et al. (författare)
  • A Simplified Method for Patterning Graphene on Dielectric Layers
  • 2021
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 13:31, s. 37500-37506
  • Tidskriftsartikel (refereegranskat)abstract
    • The large-scale formation of patterned, quasi-freestanding graphene structures supported on a dielectric has so far been limited by the need to transfer the graphene onto a suitable substrate and contamination from the associated processing steps. We report mu m scale, few-layer graphene structures formed at moderate temperatures (600-700 degrees C) and supported directly on an interfacial dielectric formed by oxidizing Si layers at the graphene/substrate interface. We show that the thickness of this underlying dielectric support can be tailored further by an additional Si intercalation of the graphene prior to oxidation. This produces quasi-freestanding, patterned graphene on dielectric SiO2 with a tunable thickness on demand, thus facilitating a new pathway to integrated graphene microelectronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy