SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gruenwald T.) "

Search: WFRF:(Gruenwald T.)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Abazov, V. M., et al. (author)
  • Measurement of direct CP violation parameters in B-+/- -> J/psi K-+/- and B-+/- -> J/psi pi(+/-) decays with 10.4 fb(-1) of Tevatron data
  • 2013
  • In: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 110:24, s. 241801-
  • Journal article (peer-reviewed)abstract
    • We present a measurement of the direct CP-violating charge asymmetry in B-+/- mesons decaying to J/psi K-+/- and J/psi pi(+/-) where J/psi decays to mu(+)mu(-), using the full run II data set of 10.4 fb(-1) of proton-antiproton collisions collected using the D0 detector at the Fermilab Tevatron Collider. A difference in the yield of B- and B+ mesons in these decays is found by fitting to the difference between their reconstructed invariant mass distributions resulting in asymmetries of A(J/psi K) = [0.59 +/- 0.37]%, which is the most precise measurement to date, and A(J/psi pi) = [-4.2 +/- 4.5]%. Both measurements are consistent with standard model predictions.
  •  
2.
  • Jansen, Joachim, 1989-, et al. (author)
  • Monitoring of carbon-water fluxes at Eurasian meteorological stations using random forest and remote sensing
  • 2023
  • In: Scientific Data. - : Springer Nature. - 2052-4463. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.
  •  
3.
  • Anderson, Cynthia M., et al. (author)
  • Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2009-31 January 2010
  • 2010
  • In: Molecular Ecology Resources. - : Wiley. - 1755-098X .- 1755-0998. ; 10:3, s. 576-579
  • Journal article (peer-reviewed)abstract
    • This article documents the addition of 220 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Allanblackia floribunda, Amblyraja radiata, Bactrocera cucurbitae, Brachycaudus helichrysi, Calopogonium mucunoides, Dissodactylus primitivus, Elodea canadensis, Ephydatia fluviatilis, Galapaganus howdenae howdenae, Hoplostethus atlanticus, Ischnura elegans, Larimichthys polyactis, Opheodrys vernalis, Pelteobagrus fulvidraco, Phragmidium violaceum, Pistacia vera, and Thunnus thynnus. These loci were cross-tested on the following species: Allanblackia gabonensis, Allanblackia stanerana, Neoceratitis cyanescens, Dacus ciliatus, Dacus demmerezi, Bactrocera zonata, Ceratitis capitata, Ceratitis rosa, Ceratits catoirii, Dacus punctatifrons, Ephydatia mulleri, Spongilla lacustris, Geodia cydonium, Axinella sp., Ischnura graellsii, Ischnura ramburii, Ischnura pumilio, Pistacia integerrima and Pistacia terebinthus.
  •  
4.
  • Luyssaert, S., et al. (author)
  • CO2 balance of boreal, temperate, and tropical forests derived from a global database
  • 2007
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 13:12, s. 2509-2537
  • Research review (peer-reviewed)abstract
    • Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.
  •  
5.
  • Wingate, L., et al. (author)
  • Interpreting canopy development and physiology using a European phenology camera network at flux sites
  • 2015
  • In: Biogeosciences. - : Copernicus GmbH. - 1726-4189. ; 12:20, s. 5995-6015
  • Journal article (peer-reviewed)abstract
    • Plant phenological development is orchestrated through subtle changes in photoperiod, temperature, soil moisture and nutrient availability. Presently, the exact timing of plant development stages and their response to climate and management practices are crudely represented in land surface models. As visual observations of phenology are laborious, there is a need to supplement long-term observations with automated techniques such as those provided by digital repeat photography at high temporal and spatial resolution. We present the first synthesis from a growing observational network of digital cameras installed on towers across Europe above deciduous and evergreen forests, grasslands and croplands, where vegetation and atmosphere CO2 fluxes are measured continuously. Using colour indices from digital images and using piecewise regression analysis of time series, we explored whether key changes in canopy phenology could be detected automatically across different land use types in the network. The piecewise regression approach could capture the start and end of the growing season, in addition to identifying striking changes in colour signals caused by flowering and management practices such as mowing. Exploring the dates of green-up and senescence of deciduous forests extracted by the piecewise regression approach against dates estimated from visual observations, we found that these phenological events could be detected adequately (RMSE < 8 and 11 days for leaf out and leaf fall, respectively). We also investigated whether the seasonal patterns of red, green and blue colour fractions derived from digital images could be modelled mechanistically using the PROSAIL model parameterised with information of seasonal changes in canopy leaf area and leaf chlorophyll and carotenoid concentrations. From a model sensitivity analysis we found that variations in colour fractions, and in particular the late spring 'green hump' observed repeatedly in deciduous broadleaf canopies across the network, are essentially dominated by changes in the respective pigment concentrations. Using the model we were able to explain why this spring maximum in green signal is often observed out of phase with the maximum period of canopy photosynthesis in ecosystems across Europe. Coupling such quasi-continuous digital records of canopy colours with co-located CO2 flux measurements will improve our understanding of how changes in growing season length are likely to shape the capacity of European ecosystems to sequester CO2 in the future.
  •  
6.
  • Yi, Chuixiang, et al. (author)
  • Climate control of terrestrial carbon exchange across biomes and continents
  • 2010
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 5:3
  • Journal article (peer-reviewed)abstract
    • Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid-and high-latitudes, (2) a strong function of dryness at mid-and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 degrees N). The sensitivity of NEE to mean annual temperature breaks down at similar to 16 degrees C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view