SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grythe Henrik) "

Sökning: WFRF:(Grythe Henrik)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Orru, Hans, et al. (författare)
  • Health impacts of PM2.5 originating from residential wood combustion in four nordic cities
  • 2022
  • Ingår i: BMC Public Health. - : BioMed Central. - 1471-2458. ; 22:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Residential wood combustion (RWC) is one of the largest sources of fine particles (PM2.5) in the Nordic cities. The current study aims to calculate the related health effects in four studied city areas in Sweden, Finland, Norway, and Denmark.Methods: Health impact assessment (HIA) was employed as the methodology to quantify the health burden. Firstly, the RWC induced annual average PM2.5 concentrations from local sources were estimated with air pollution dispersion modelling. Secondly, the baseline mortality rates were retrieved from the national health registers. Thirdly, the concentration-response function from a previous epidemiological study was applied. For the health impact calculations, the WHO-developed tool AirQ + was used.Results: Amongst the studied city areas, the local RWC induced PM2.5 concentration was lowest in the Helsinki Metropolitan Area (population-weighted annual average concentration 0.46 µg m− 3) and highest in Oslo (2.77 µg m− 3). Each year, particulate matter attributed to RWC caused around 19 premature deaths in Umeå (95% CI: 8–29), 85 in the Helsinki Metropolitan Area (95% CI: 35–129), 78 in Copenhagen (95% CI: 33–118), and 232 premature deaths in Oslo (95% CI: 97–346). The average loss of life years per premature death case was approximately ten years; however, in the whole population, this reflects on average a decrease in life expectancy by 0.25 (0.10–0.36) years. In terms of the relative contributions in cities, life expectancy will be decreased by 0.10 (95% CI: 0.05–0.16), 0.18 (95% CI: 0.07–0.28), 0.22 (95% CI: 0.09–0.33) and 0.63 (95% CI: 0.26–0.96) years in the Helsinki Metropolitan Area, Umeå, Copenhagen and Oslo respectively. The number of years of life lost was lowest in Umeå (172, 95% CI: 71–260) and highest in Oslo (2458, 95% CI: 1033–3669).Conclusions: All four Nordic city areas have a substantial amount of domestic heating, and RWC is one of the most significant sources of PM2.5. This implicates a substantial predicted impact on public health in terms of premature mortality. Thus, several public health measures are needed to reduce the RWC emissions.
  •  
2.
  • Boy, M., et al. (författare)
  • Interactions between the atmosphere, cryosphere, and ecosystems at northern high latitudes
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:3, s. 2015-2061
  • Tidskriftsartikel (refereegranskat)abstract
    • The Nordic Centre of Excellence CRAICC (Cryosphere-Atmosphere Interactions in a Changing Arctic Climate), funded by NordForsk in the years 2011-2016, is the largest joint Nordic research and innovation initiative to date, aiming to strengthen research and innovation regarding climate change issues in the Nordic region. CRAICC gathered more than 100 scientists from all Nordic countries in a virtual centre with the objectives of identifying and quantifying the major processes controlling Arctic warming and related feedback mechanisms, outlining strategies to mitigate Arctic warming, and developing Nordic Earth system modelling with a focus on short-lived climate forcers (SLCFs), including natural and anthropogenic aerosols. The outcome of CRAICC is reflected in more than 150 peer-reviewed scientific publications, most of which are in the CRAICC special issue of the journal Atmospheric Chemistry and Physics. This paper presents an overview of the main scientific topics investigated in the centre and provides the reader with a state-of-the-art comprehensive summary of what has been achieved in CRAICC with links to the particular publications for further detail. Faced with a vast amount of scientific discovery, we do not claim to completely summarize the results from CRAICC within this paper, but rather concentrate here on the main results which are related to feedback loops in climate change-cryosphere interactions that affect Arctic amplification.
  •  
3.
  • Eckhardt, S., et al. (författare)
  • The influence of cruise ship emissions on air pollution in Svalbard - a harbinger of a more polluted Arctic?
  • 2013
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 13:16, s. 8401-8409
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we have analyzed whether tourist cruise ships have an influence on measured sulfur dioxide (SO2), ozone (O-3), Aitken mode particle and equivalent black carbon (EBC) concentrations at Ny Alesund and Zeppelin Mountain on Svalbard in the Norwegian Arctic during summer. We separated the measurement data set into periods when ships were present and periods when ships were not present in the Kongsfjord area, according to a long-term record of the number of passengers visiting Ny Alesund. We show that when ships with more than 50 passengers cruise in the Kongsfjord, measured daytime mean concentrations of 60 nm particles and EBC in summer show enhancements of 72 and 45 %, respectively, relative to values when ships are not present. Even larger enhancements of 81 and 72% were found for stagnant conditions. In contrast, O-3 concentrations were 5% lower on average and 7% lower under stagnant conditions, due to titration of O-3 with the emitted nitric oxide (NO). The differences between the two data subsets are largest for the highest measured percentiles, while relatively small differences were found for the median concentrations, indicating that ship plumes are sampled relatively infrequently even when ships are present although they carry high pollutant concentrations. We estimate that the ships increased the total summer mean concentrations of SO2, 60 nm particles and EBC by 15, 18 and 11 %, respectively. Our findings have two important implications. Firstly, even at such a remote Arctic observatory as Zeppelin, the measurements can be influenced by tourist ship emissions. Careful data screening is recommended before summertime Zeppelin data is used for data analysis or for comparison with global chemistry transport models. However, Zeppelin remains as one of the most valuable Arctic observatories, as most other Arctic observatories face even larger local pollution problems. Secondly, given landing statistics of tourist ships on Svalbard, it is suspected that large parts of the Svalbard archipelago are affected by cruise ship emissions. Thus, our results may be taken as a warning signal of future pan-Arctic conditions if Arctic shipping becomes more frequent and emission regulations are not strict enough.
  •  
4.
  • Gjerstad, Karl-Idar, et al. (författare)
  • NORDUST : Nordic Road Dust Project
  • 2019
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Road dust is an important contributor to airborne particle pollution, especially in the Nordic countries where high road surface wear, due to studded tyre useas well as winter maintenance and operations including sanding and salting are important contributors. Even though the road dust problems are similar, the countries have tackled different parts of the problem with different research approaches, resulting in a complex knowledgebase in need of compilation. A former project, NORTRIP, started this work and implemented the knowledge into an emission model with a specially elaborated road dust focus. The model work has been used to identify knowledge gaps, intended to be filled within the NorDust project. Laboratory tests and controlled and uncontrolled field measurements as well as parametrisation and modelling has been used as tools to find, describe and implement issues concerning road dust formation, suspension and dynamics and road operation effects on emissions in facilities and sites in Finland and Sweden. The NORTRIP model has been implemented and evaluated in Iceland, not previously involved in the model development, to identify input data needs. The project has resulted in an array of findings, of which some have been possible to implement in new parametrisations in the NORTRIP model. In the complex research area of road dust dynamics, the project has also resulted in a lot of practical experiences concerning experimental and measurement designs and evaluation possibilities that future research will be able to benefit from.
  •  
5.
  • Groot Zwaaftink, C. D., et al. (författare)
  • Substantial contribution of northern high-latitude sources to mineral dust in the Arctic
  • 2016
  • Ingår i: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 121:22, s. 13678-13697
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Arctic, impurities in the atmosphere and cryosphere can strongly affect the atmospheric radiation and surface energy balance. While black carbon has hence received much attention, mineral dust has been in the background. Mineral dust is not only transported into the Arctic from remote regions but also, possibly increasingly, generated in the region itself. Here we study mineral dust in the Arctic based on global transport model simulations. For this, we have developed a dust mobilization scheme in combination with the Lagrangian particle dispersion model FLEXPART. A model evaluation, based on measurements of surface concentrations and annual deposition at a number of stations and aircraft vertical profiles, shows the suitability of this model to study global dust transport. Simulations indicate that about 3% of global dust emission originates from high-latitude dust sources in the Arctic. Due to limited convection and enhanced efficiency of removal, dust emitted in these source regions is mostly deposited closer to the source than dust from for instance Asia or Africa. This leads to dominant contributions of local dust sources to total surface dust concentrations (similar to 85%) and dust deposition (similar to 90%) in the Arctic region. Dust deposition from local sources peaks in autumn, while dust deposition from remote sources occurs mainly in spring in the Arctic. With increasing altitude, remote sources become more important for dust concentrations as well as deposition. Therefore, total atmospheric dust loads in the Arctic are strongly influenced by Asian (similar to 38%) and African (similar to 32%) dust, whereas local dust contributes only 27%. Dust loads are thus largest in spring when remote dust is efficiently transported into the Arctic. Overall, our study shows that contributions of local dust sources are more important in the Arctic than previously thought, particularly with respect to surface concentrations and dust deposition.
  •  
6.
  • Grythe, Henrik, 1980-, et al. (författare)
  • A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART
  • 2017
  • Ingår i: Geoscientific Model Development. - : Copernicus GmbH. - 1991-959X .- 1991-9603. ; 10:4, s. 1447-1466
  • Tidskriftsartikel (refereegranskat)abstract
    • A new and more physically based treatment of how removal by precipitation is calculated by FLEXPART is introduced, to take into account more aspects of aerosol diversity. Also new, is the definition of clouds and cloud properties. Results from simulations show good agreement with observed atmospheric concentrations for distinctly different aerosols. Atmospheric lifetimes were found to vary from a few hours (large aerosol particles) up to a month (small non-soluble).
  •  
7.
  • Grythe, Henrik, et al. (författare)
  • A review of sea-spray aerosol source functions using a large global set of sea salt aerosol concentration measurements
  • 2014
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 14:3, s. 1277-1297
  • Tidskriftsartikel (refereegranskat)abstract
    • Sea-spray aerosols (SSA) are an important part of the climate system because of their effects on the global radiative budget - both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime, and precipitation. In terms of their global mass, SSA have the largest uncertainty of all aerosols. In this study we review 21 SSA source functions from the literature, several of which are used in current climate models. In addition, we propose a new function. Even excluding outliers, the global annual SSA mass produced spans roughly 3-70 Pg yr(-1) for the different source functions, for particles with dry diameter D-p < 10 mu m, with relatively little interannual variability for a given function. The FLEXPART Lagrangian particle dispersion model was run in backward mode for a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes in order to obtain modeled SSA concentrations. This allowed us to efficiently and simultaneously evaluate all 21 source functions against the measurements. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for improving the SSA source function parameterizations. The best source functions reproduced as much as 70% of the observed SSA concentration variability at several stations, which is comparable with state of the art aerosol models. The main driver of SSA production is wind, and we found that the best fit to the observation data could be obtained when the SSA production is proportional to U-10(3.5), where U-10 is the source region averaged 10m wind speed. A strong influence of SST on SSA production, with higher temperatures leading to higher production, could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. Our new source function with wind speed and temperature dependence gives a global SSA production for particles smaller than D-p < 10 mu m of 9 Pg yr(-1), and is the best fit to the observed concentrations.
  •  
8.
  •  
9.
  • Grythe, Henrik, 1980- (författare)
  • Primary Marine Aerosol : Validation of sea spray source functions using observations and transport modeling
  • 2014
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget, both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA is the largest source and has the largest uncertainty of all aerosols. In this study I have reviewed 21 SSA source functions from the literature, several of which are used in current climate models, and as a result of this work  a new source function is proposed.The model FLEXPART was run in backward mode utilizing a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allows to efficiently evaluate all 21 source functions at the same time. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for evaluating their influence on SSA production.The main driver of SSA production is wind, and the best fit to the observation data could be obtained when the SSA production is proportional to U103.5. A strong influence of SST on the production could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. For SST we obtain the best fit to the measurement data when SSA concentration is proportional to 0.031×T+0.39, where T is the source average SST. Based on the model source region average temperature and wind, an empirical fit was made to the data and a new source function obtained. The fit was made by using the model concentrations, observational data, ECMWF winds and the existing source function volume fluxes. Our new source function gives a global SSA production for particles smaller than 10μm of 9Pg yr-1 and is the best fit to the observed concentrations. The existing source functions display the large uncertainties, spanning from a global emitted mass of 1.9 to 100’s of Pg yr-1. Wind dependencies also range strongly and those far from U103.5, have poor correlation with observed values. It is also possible to add temperature dependence to an existing source function to come further towards observed values with the model results. Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget, both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA is the largest source and has the largest uncertainty of all aerosols. In this study I have reviewed 21 SSA source functions from the literature, several of which are used in current climate models, and as a result of this work  a new source function is proposed.The model FLEXPART was run in backward mode utilizing a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allows to efficiently evaluate all 21 source functions at the same time. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for evaluating their influence on SSA production.The main driver of SSA production is wind, and the best fit to the observation data could be obtained when the SSA production is proportional to U103.5. A strong influence of SST on the production could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. For SST we obtain the best fit to the measurement data when SSA concentration is proportional to 0.031×T+0.39, where T is the source average SST. Based on the model source region average temperature and wind, an empirical fit was made to the data and a new source function obtained. The fit was made by using the model concentrations, observational data, ECMWF winds and the existing source function volume fluxes. Our new source function gives a global SSA production for particles smaller than 10μm of 9Pg yr-1 and is the best fit to the observed concentrations. The existing source functions display the large uncertainties, spanning from a global emitted mass of 1.9 to 100’s of Pg yr-1. Wind dependencies also range strongly and those far from U103.5, have poor correlation with observed values. It is also possible to add temperature dependence to an existing source function to come further towards observed values with the model results.Sea spray aerosols (SSA) are an important part of the climate system through their effects on the global radiative budget, both directly as scatterers and absorbers of solar and terrestrial radiation, and indirectly as cloud condensation nuclei (CCN) influencing cloud formation, lifetime and precipitation. In terms of their global mass, SSA is the largest source and has the largest uncertainty of all aerosols. In this study I have reviewed 21 SSA source functions from the literature, several of which are used in current climate models, and as a result of this work  a new source function is proposed.The model FLEXPART was run in backward mode utilizing a large global set of observed SSA concentrations, comprised of several station networks and ship cruise measurement campaigns. FLEXPART backward calculations produce gridded emission sensitivity fields, which can subsequently be multiplied with gridded SSA production fluxes to obtain modeled SSA concentrations. This allows to efficiently evaluate all 21 source functions at the same time. Another advantage of this method is that source-region information on wind speed and sea surface temperatures (SSTs) could be stored and used for evaluating their influence on SSA production.The main driver of SSA production is wind, and the best fit to the observation data could be obtained when the SSA production is proportional to U103.5. A strong influence of SST on the production could be detected as well, although the underlying physical mechanisms of the SST influence remains unclear. For SST we obtain the best fit to the measurement data when SSA concentration is proportional to 0.031×T+0.39, where T is the source average SST. Based on the model source region average temperature and wind, an empirical fit was made to the data and a new source function obtained. The fit was made by using the model concentrations, observational data, ECMWF winds and the existing source function volume fluxes. Our new source function gives a global SSA production for particles smaller than 10μm of 9Pg yr-1 and is the best fit to the observed concentrations. The existing source functions display the large uncertainties, spanning from a global emitted mass of 1.9 to 100’s of Pg yr-1. Wind dependencies also range strongly and those far from U103.5, have poor correlation with observed values. It is also possible to add temperature dependence to an existing source function to come further towards observed values with the model results. 
  •  
10.
  • Grythe, Henrik, 1980- (författare)
  • Quantification of sources and removal mechanisms of atmospheric aerosol particles
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The focus of this work has been to quantify important processes for climatically relevant aerosols, and to improve our understanding of, and ability to accurately model, aerosols in the atmosphere on a large scale. This thesis contains five papers focused on different parts of the life cycle of atmospheric aerosol particles. Two papers describe the physical process of emission of primary marine aerosols. The large uncertainties in these processes are demonstrated by examining the diversity of existing parameterizations for emissions. Building from laboratory experiments to validation of model results with observations, new parameterizations are suggested. These take into account also effects of water temperature on primary marine aerosol production. In the third paper the main focus was to develop a new aerosol wet removal scheme in the Lagrangian transport and dispersion model FLEXPART. Removal timescales and atmospheric concentrations are found to be close to observation based estimates. The final two papers focus on atmospheric black carbon aerosols at high latitudes. As an example of increased human activities in the Arctic, local emissions from cruise ships visiting the research base in Ny Ålesund had demonstrable effects on the level of pollutants measured there. In contrast, inland Antarctic air was shown to be clean compared to the Arctic, due to the extremely long transport time from any major aerosol sources. The work done in this thesis has addressed critical uncertainties regarding the aerosol lifecycle, by better constraining aerosol emissions and atmospheric lifetimes. The development of the new wet removal scheme has improved FLEXPART model accuracy, which will be beneficial in future applications of the model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
Typ av publikation
tidskriftsartikel (9)
rapport (1)
annan publikation (1)
doktorsavhandling (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (4)
Författare/redaktör
Ström, Johan (3)
Krejci, Radovan (3)
Skov, H. (3)
Kulmala, M (2)
Kirkevag, A. (2)
Riipinen, Ilona (2)
visa fler...
Zieger, Paul (2)
Aalto, P (1)
Soares, J (1)
Vitale, V. (1)
Lupi, A. (1)
Svensson, J (1)
Johansson, Christer (1)
Forsberg, Bertil, pr ... (1)
Acosta Navarro, Juan ... (1)
Seland, O. (1)
Iversen, T. (1)
Hansson, Hans-Christ ... (1)
Ekman, Annica M. L. (1)
Weyhenmeyer, Gesa A. (1)
Sigsgaard, Torben (1)
Roldin, Pontus (1)
Kristensson, Adam (1)
Swietlicki, Erik (1)
Vogt, Matthias (1)
Duplissy, J. (1)
Tunved, Peter (1)
Backman, J (1)
Isaksson, E (1)
Kasurinen, V. (1)
Gustafsson, Mats, 19 ... (1)
Segersson, David (1)
Bäcklund, A (1)
Pettersson, Jan B. C ... (1)
Järlskog, Ida, 1991 (1)
Korhola, Atte (1)
Blomqvist, Göran, 19 ... (1)
Seppa, H (1)
Janhäll, Sara, 1965- (1)
Orru, Hans (1)
Korhola, A. (1)
Swietlicki, E. (1)
Brandt, Jørgen (1)
Ogren, J. A. (1)
Lihavainen, H. (1)
Fiebig, M. (1)
de Leeuw, G. (1)
Eckhardt, Sabine (1)
Eckhardt, S. (1)
Cassiani, M. (1)
visa färre...
Lärosäte
Stockholms universitet (11)
Lunds universitet (2)
Göteborgs universitet (1)
Umeå universitet (1)
Uppsala universitet (1)
VTI - Statens väg- och transportforskningsinstitut (1)
Språk
Engelska (13)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (11)
Teknik (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy