SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Grytnes J. A.) "

Sökning: WFRF:(Grytnes J. A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sabatini, F. M., et al. (författare)
  • sPlotOpen - An environmentally balanced, open-access, global dataset of vegetation plots
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238.
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation Assessing biodiversity status and trends in plant communities is critical for understanding, quantifying and predicting the effects of global change on ecosystems. Vegetation plots record the occurrence or abundance of all plant species co-occurring within delimited local areas. This allows species absences to be inferred, information seldom provided by existing global plant datasets. Although many vegetation plots have been recorded, most are not available to the global research community. A recent initiative, called 'sPlot', compiled the first global vegetation plot database, and continues to grow and curate it. The sPlot database, however, is extremely unbalanced spatially and environmentally, and is not open-access. Here, we address both these issues by (a) resampling the vegetation plots using several environmental variables as sampling strata and (b) securing permission from data holders of 105 local-to-regional datasets to openly release data. We thus present sPlotOpen, the largest open-access dataset of vegetation plots ever released. sPlotOpen can be used to explore global diversity at the plant community level, as ground truth data in remote sensing applications, or as a baseline for biodiversity monitoring. Main types of variable contained Vegetation plots (n = 95,104) recording cover or abundance of naturally co-occurring vascular plant species within delimited areas. sPlotOpen contains three partially overlapping resampled datasets (c. 50,000 plots each), to be used as replicates in global analyses. Besides geographical location, date, plot size, biome, elevation, slope, aspect, vegetation type, naturalness, coverage of various vegetation layers, and source dataset, plot-level data also include community-weighted means and variances of 18 plant functional traits from the TRY Plant Trait Database. Spatial location and grain Global, 0.01-40,000 m(2). Time period and grain 1888-2015, recording dates. Major taxa and level of measurement 42,677 vascular plant taxa, plot-level records. Software format Three main matrices (.csv), relationally linked.
  •  
2.
  • Dengler, Juergen, et al. (författare)
  • GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands
  • 2018
  • Ingår i: Phytocoenologia. - : Schweizerbart. - 0340-269X. ; 48:3, s. 331-347
  • Tidskriftsartikel (refereegranskat)abstract
    • GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.
  •  
3.
  • Gallou, Arnaud, et al. (författare)
  • Diurnal temperature range as a key predictor of plants' elevation ranges globally
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the 'temperature range squeeze' hypothesis, predicting a negative range size-temperature variability relationship. We test these contrasting predictions by relating 88,000 elevation range sizes of vascular plants in 44 mountains to short- and long-term temperature variation. Consistent with our hypothesis, we find that species' range size is negatively correlated with diurnal temperature range. Accurate predictions of short-term temperature variation will become increasingly important for extinction risk assessment in the future. This study relates 88,000 elevation range sizes of vascular plants in 44 mountains to short-term and long-term temperature variation. The authors finding of decreasing elevation range sizes with greater diurnal temperature range supports a novel biodiversity hypothesis and indicates increased extinction risk of continental species.
  •  
4.
  • Bruun, Hans Henrik, et al. (författare)
  • Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities
  • 2006
  • Ingår i: Journal of Vegetation Science. - 1100-9233 .- 1654-1103. ; 17:1, s. 37-46
  • Tidskriftsartikel (refereegranskat)abstract
    • Question: What is the relationship between species richness of vascular plants, bryophytes and macrolichens, and two important gradients in the alpine environment, altitude and local topography? Location: Northernmost Fennoscandia, 250-152 m a.s.l. corresponding to the range between timberline and mountain top. Methods: The vegetation was sampled in six mountain areas. For each 25 vertical metres, the local topographic gradient from wind-blown ridge to snowbed was sampled in quadrats of 0.8 m x 0.8 m. Patterns in species richness were explored using Poisson regression (Generalized Linear Models). Functional groups of species, i.e. evergreen and deciduous dwarf-shrubs, forbs, graminoids, mosses, hepatics and lichens were investigated separately. Results: Functional groups showed markedly different patterns with respect to both altitude and topography. Species richness of all vascular plants showed a unimodal relationship with altitude. The same was true for graminoids, forbs and lichens analysed separately, but forb richness peaked at Much higher altitudes than total richness. The richness of dwarf-shrubs decreased monotonically with altitude, whereas richness of mosses and liverworts showed an increasing trend. Significant interactions between altitude and local topography were present for several groups. The unimodal pattern for total plant species richness was interpreted in terms of local productivity, physical disturbance, trophic interactions, and in terms of species pool effects. Conclusions: Patterns in local species richness result from the action of two opposing forces: declining species pool and decreasing intensity of competition with altitude.
  •  
5.
  • Happonen, Konsta, et al. (författare)
  • Trait-based responses to land use and canopy dynamics modify long-term diversity changes in forest understories
  • 2021
  • Ingår i: Global Ecology and Biogeography. - : Wiley. - 1466-822X .- 1466-8238. ; 30:9, s. 1863-1875
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim Land use is the foremost cause of global biodiversity decline, but species do not respond equally to land-use practices. Instead, it is suggested that responses vary with species traits, but long-term data on the trait-mediated effects of land use on communities are scarce. Here we study how forest understorey communities have been affected by two land-use practices during 4-5 decades, and whether changes in plant diversity are related to changes in functional composition. Location Finland. Time period 1968-2019. Major taxa studied Vascular plants. Methods We resurveyed 245 vegetation plots in boreal herb-rich forest understories, and used hierarchical Bayesian linear models to relate changes in diversity, species composition, average plant size, and leaf economic traits to reindeer abundance, forest management intensity, and changes in climate, canopy cover and composition. We also studied the relationship between species evenness and plant size across both space and time. Results Intensively managed forests decreased in species richness and had increased turnover, but management did not affect functional composition. Increased reindeer densities corresponded with increased leaf dry matter content, evenness and diversity, and decreased height and specific leaf area. Successional development in the canopy was associated with increased specific leaf area and decreased leaf dry matter content and height in the understorey over the study period. Effects of reindeer abundance and canopy density on diversity were partially mediated by vegetation height, which had a negative relationship with evenness across both space and time. Observed changes in climate had no discernible effect on any variable. Main conclusions Functional traits are useful in connecting vegetation changes to the mechanisms that drive them, and provide unique information compared to turnover and diversity metrics. These trait-dependent selection effects could inform which species benefit and which suffer from land-use changes and explain observed biodiversity changes under global change.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy