SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gryzlova E. V.) "

Search: WFRF:(Gryzlova E. V.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Maroju, P. K., et al. (author)
  • Analysis of two-color photoelectron spectroscopy for attosecond metrology at seeded free-electron lasers
  • 2021
  • In: New Journal of Physics. - : IOP Publishing. - 1367-2630. ; 23:4
  • Journal article (peer-reviewed)abstract
    • The generation of attosecond pulse trains at free-electron lasers opens new opportunities in ultrafast science, as it gives access, for the first time, to reproducible, programmable, extreme ultraviolet (XUV) waveforms with high intensity. In this work, we present a detailed analysis of the theoretical model underlying the temporal characterization of the attosecond pulse trains recently generated at the free-electron laser FERMI. In particular, the validity of the approximations used for the correlated analysis of the photoelectron spectra generated in the two-color photoionization experiments are thoroughly discussed. The ranges of validity of the assumptions, in connection with the main experimental parameters, are derived.
  •  
2.
  • Gryzlova, E. V., et al. (author)
  • Influence of an atomic resonance on the coherent control of the photoionization process
  • 2022
  • In: Physical Review Research. - 2643-1564. ; 4:3
  • Journal article (peer-reviewed)abstract
    • In coherent control schemes, pathways connecting an initial and a final state can be independently controlled by manipulating the complex amplitudes of their transition matrix elements. For paths characterized by the absorption of multiple photons, these quantities depend on the magnitude and phase between the intermediate steps, and are expected to be strongly affected by the presence of resonances. We investigate the coherent control of the photoemission process in neon using a phase-controlled two-color extreme ultraviolet pulse with frequency in proximity of an excited energy state. Using helium as a reference, we show that the presence of such a resonance in neon modifies the amplitude and phase of the asymmetric emission of photoelectrons. Theoretical simulations based on perturbation theory are in fair agreement with the experimental observations.
  •  
3.
  • Mazza, T., et al. (author)
  • Mapping Resonance Structures in Transient Core-Ionized Atoms
  • 2020
  • In: Physical Review X. - 2160-3308. ; 10:4
  • Journal article (peer-reviewed)abstract
    • The nature of transient electronic states created by photoabsorption critically determines the dynamics of the subsequently evolving system. Here, we investigate K-shell photoionized atomic neon by absorbing a second photon within the Auger-decay lifetime of 2.4 fs using the European XFEL, a unique high-repetition-rate, wavelength-tunable x-ray free-electron laser. By high-resolution electron spectroscopy, we map out the transient Rydberg resonances unraveling the details of the subsequent decay of the hollow atom. So far, ultra-short-lived electronic transients, which are often inaccessible by experiments, were mainly inferred from theory but are now addressed by nonlinear x-ray absorption. The successful characterization of these resonances with femtosecond lifetimes provides the basis for a novel class of site-specific, nonlinear, and time-resolved studies with strong impact for a wide range of topics in physics and chemistry.
  •  
4.
  • Rouzee, A., et al. (author)
  • Angle-resolved photoelectron spectroscopy of sequential three-photon triple ionization of neon at 90.5 eV photon energy
  • 2011
  • In: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 83:3
  • Journal article (peer-reviewed)abstract
    • Multiple photoionization of neon atoms by a strong 13.7 nm (90.5 eV) laser pulse has been studied at the FLASH free electron laser in Hamburg. A velocity map imaging spectrometer was used to record angle-resolved photoelectron spectra on a single-shot basis. Analysis of the evolution of the spectra with the FEL pulse energy in combination with extensive theoretical calculations allows the ionization pathways that contribute to be assigned, revealing the occurrence of sequential three-photon triple ionization.
  •  
5.
  • Augustin, S., et al. (author)
  • Signatures of autoionization in the angular electron distribution in two-photon double ionization of Ar
  • 2018
  • In: Physical Review A. - 2469-9926. ; 98:3
  • Journal article (peer-reviewed)abstract
    • A kinematically complete experiment on two-photon double ionization of Ar by free-electron laser radiation with a photon energy of 27.93 eV was performed. The electron energy spectra show that double ionization is dominated by the sequential process. Comparison of the electron angular distributions to our data for single ionization and to theory confirms that even in the sequential process the electrons from both ionization steps are correlated with each other through polarization of the intermediate Ar+ state. Furthermore, a very important role of autoionization in both ionization steps is found.
  •  
6.
  • Gryzlova, E. V., et al. (author)
  • Doubly resonant three-photon double ionization of Ar atoms induced by an EUV free-electron laser
  • 2011
  • In: Physical Review A (Atomic, Molecular and Optical Physics). - 1050-2947. ; 84:6
  • Journal article (peer-reviewed)abstract
    • A mechanism for three-photon double ionization of atoms by extreme-ultraviolet free-electron laser pulses is revealed, where in a sequential process the second ionization step, proceeding via resonant two-photon ionization of ions, is strongly enhanced by the excitation of ionic autoionizing states. In contrast to the conventional model, the mechanism explains the observed relative intensities of photoelectron peaks and their angular dependence in three-photon double ionization of argon.
  •  
7.
  • Ilchen, M., et al. (author)
  • X-ray spectroscopy on ultrafast-decaying core-excited atomic ions
  • 2020
  • In: Charge-exchange. - : IOP Publishing. - 1742-6588. ; 1412
  • Conference paper (peer-reviewed)abstract
    • Results from the first soft X-ray user experiment at the European XFEL on nonlinear photon-matter interaction will be presented. Angle-resolved electron time-of-flight spectroscopy employed at the AQS (Atomic- like Quantum Systems) endstation of the SQS (Small Quantum Systems) instrument reveals insight into the character of resonances in highly transient, core ionized neon ions, i.e. Ne:+ 1s12s22p6 → Ne+&∗ 1s02s22p6np, together with their respective relaxation dynamics. Enabled by the unique properties of the European XFEL, novel perspectives on efficient nonlinear spectroscopy will be discussed.
  •  
8.
  • Ueda, Kiyoshi, et al. (author)
  • Roadmap on photonic, electronic and atomic collision physics : I. Light-matter interaction
  • 2019
  • In: Journal of Physics B. - : IOP PUBLISHING LTD. - 0953-4075 .- 1361-6455. ; 52:17
  • Journal article (peer-reviewed)abstract
    • We publish three Roadmaps on photonic, electronic and atomic collision physics in order to celebrate the 60th anniversary of the ICPEAC conference. In Roadmap I, we focus on the light-matter interaction. In this area, studies of ultrafast electronic and molecular dynamics have been rapidly growing, with the advent of new light sources such as attosecond lasers and x-ray free electron lasers. In parallel, experiments with established synchrotron radiation sources and femtosecond lasers using cutting-edge detection schemes are revealing new scientific insights that have never been exploited. Relevant theories are also being rapidly developed. Target samples for photon-impact experiments are expanding from atoms and small molecules to complex systems such as biomolecules, fullerene, clusters and solids. This Roadmap aims to look back along the road, explaining the development of these fields, and look forward, collecting contributions from twenty leading groups from the field.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view