SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gstaiger Matthias) "

Sökning: WFRF:(Gstaiger Matthias)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Habjan, Matthias, et al. (författare)
  • NSs protein of rift valley fever virus induces the specific degradation of the double-stranded RNA-dependent protein kinase
  • 2009
  • Ingår i: Journal of Virology. - 0022-538X .- 1098-5514. ; 83:9, s. 4365-4375
  • Tidskriftsartikel (refereegranskat)abstract
    • Rift Valley fever virus (RVFV) continues to cause large outbreaks of acute febrile and often fatal illness among humans and domesticated animals in Africa, Saudi Arabia, and Yemen. The high pathogenicity of this bunyavirus is mainly due to the viral protein NSs, which was shown to prevent transcriptional induction of the antivirally active type I interferons (alpha/beta interferon [IFN-alpha/beta]). Viruses lacking the NSs gene induce synthesis of IFNs and are therefore attenuated, whereas the noninducing wild-type RVFV strains can only be inhibited by pretreatment with IFN. We demonstrate here in vitro and in vivo that a substantial part of the antiviral activity of IFN against RVFV is due to a double-stranded RNA-dependent protein kinase (PKR). PKR-mediated virus inhibition, however, was much more pronounced for the strain Clone 13 with NSs deleted than for the NSs-expressing strain ZH548. In vivo, Clone 13 was nonpathogenic for wild-type (wt) mice but could regain pathogenicity if mice lacked the PKR gene. ZH548, in contrast, killed both wt and PKR knockout mice indiscriminately. ZH548 was largely resistant to the antiviral properties of PKR because RVFV NSs triggered the specific degradation of PKR via the proteasome. The NSs proteins of the related but less virulent sandfly fever Sicilian virus and La Crosse virus, in contrast, had no such anti-PKR activity despite being efficient suppressors of IFN induction. Our data suggest that RVFV NSs has gained an additional anti-IFN function that may explain the extraordinary pathogenicity of this virus.
  •  
2.
  • Banerjee, Jennifer J., et al. (författare)
  • Meru couples planar cell polarity with apical-basal polarity during asymmetric cell division
  • 2017
  • Ingår i: eLife. - 2050-084X. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Polarity is a shared feature of most cells. In epithelia, apical-basal polarity often coexists, and sometimes intersects with planar cell polarity (PCP), which orients cells in the epithelial plane. From a limited set of core building blocks (e.g. the Par complexes for apical-basal polarity and the Frizzled/Dishevelled complex for PCP), a diverse array of polarized cells and tissues are generated. This suggests the existence of little-studied tissue-specific factors that rewire the core polarity modules to the appropriate conformation. In Drosophila sensory organ precursors (SOPs), the core PCP components initiate the planar polarization of apical-basal determinants, ensuring asymmetric division into daughter cells of different fates. We show that Meru, a RASSF9/RASSF10 homologue, is expressed specifically in SOPs, recruited to the posterior cortex by Frizzled/Dishevelled, and in turn polarizes the apical-basal polarity factor Bazooka (Par3). Thus, Meru belongs to a class of proteins that act cell/tissue-specifically to remodel the core polarity machinery.
  •  
3.
  • Bludau, Isabell, et al. (författare)
  • Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes
  • 2020
  • Ingår i: Nature Protocols. - : Springer Science and Business Media LLC. - 1754-2189 .- 1750-2799. ; 15:8, s. 2341-2386
  • Tidskriftsartikel (refereegranskat)abstract
    • Most catalytic, structural and regulatory functions of the cell are carried out by functional modules, typically complexes containing or consisting of proteins. The composition and abundance of these complexes and the quantitative distribution of specific proteins across different modules are therefore of major significance in basic and translational biology. However, detection and quantification of protein complexes on a proteome-wide scale is technically challenging. We have recently extended the targeted proteomics rationale to the level of native protein complex analysis (complex-centric proteome profiling). The complex-centric workflow described herein consists of size exclusion chromatography (SEC) to fractionate native protein complexes, data-independent acquisition mass spectrometry to precisely quantify the proteins in each SEC fraction based on a set of proteotypic peptides and targeted, complex-centric analysis where prior information from generic protein interaction maps is used to detect and quantify protein complexes with high selectivity and statistical error control via the computational framework CCprofiler (https://github.com/CCprofiler/CCprofiler). Complex-centric proteome profiling captures most proteins in complex-assembled state and reveals their organization into hundreds of complexes and complex variants observable in a given cellular state. The protocol is applicable to cultured cells and can potentially also be adapted to primary tissue and does not require any genetic engineering of the respective sample sources. At present, it requires ~8 d of wet-laboratory work, 15 d of mass spectrometry measurement time and 7 d of computational analysis.
  •  
4.
  • Fossati, Andrea, et al. (författare)
  • PCprophet : a framework for protein complex prediction and differential analysis using proteomic data
  • 2021
  • Ingår i: Nature Methods. - : Springer Science and Business Media LLC. - 1548-7091 .- 1548-7105. ; 18:5, s. 520-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite the availability of methods for analyzing protein complexes, systematic analysis of complexes under multiple conditions remains challenging. Approaches based on biochemical fractionation of intact, native complexes and correlation of protein profiles have shown promise. However, most approaches for interpreting cofractionation datasets to yield complex composition and rearrangements between samples depend considerably on protein–protein interaction inference. We introduce PCprophet, a toolkit built on size exclusion chromatography–sequential window acquisition of all theoretical mass spectrometry (SEC-SWATH-MS) data to predict protein complexes and characterize their changes across experimental conditions. We demonstrate improved performance of PCprophet over state-of-the-art approaches and introduce a Bayesian approach to analyze altered protein–protein interactions across conditions. We provide both command-line and graphical interfaces to support the application of PCprophet to any cofractionation MS dataset, independent of separation or quantitative liquid chromatography–MS workflow, for the detection and quantitative tracking of protein complexes and their physiological dynamics.
  •  
5.
  • Heusel, Moritz, et al. (författare)
  • A Global Screen for Assembly State Changes of the Mitotic Proteome by SEC-SWATH-MS
  • 2020
  • Ingår i: Cell systems. - : Elsevier BV. - 2405-4712. ; 10:2, s. 6-155
  • Tidskriftsartikel (refereegranskat)abstract
    • Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins. In proteomic studies, these have been treated as independent entities, disregarding their higher-level organization into complexes that affects their activity and/or function and is thus of great interest for biological research. Here, we describe the implementation of an integrated technique to quantify cell-state-specific changes in the physical arrangement of protein complexes concurrently for thousands of proteins and hundreds of complexes. Applying this technique to a comparison of human cells in interphase and mitosis, we provide a systematic overview of mitotic proteome reorganization. The results recall key hallmarks of mitotic complex remodeling and suggest a model of nuclear pore complex disassembly, which we validate by orthogonal methods. To support the interpretation of quantitative SEC-SWATH-MS datasets, we extend the software CCprofiler and provide an interactive exploration tool, SECexplorer-cc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy