SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gu WQ) "

Sökning: WFRF:(Gu WQ)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kilpelainen, TO, et al. (författare)
  • Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity
  • 2019
  • Ingår i: Nature communications. - London : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 376-
  • Tidskriftsartikel (refereegranskat)abstract
    • Many genetic loci affect circulating lipid levels, but it remains unknown whether lifestyle factors, such as physical activity, modify these genetic effects. To identify lipid loci interacting with physical activity, we performed genome-wide analyses of circulating HDL cholesterol, LDL cholesterol, and triglyceride levels in up to 120,979 individuals of European, African, Asian, Hispanic, and Brazilian ancestry, with follow-up of suggestive associations in an additional 131,012 individuals. We find four loci, in/near CLASP1, LHX1, SNTA1, and CNTNAP2, that are associated with circulating lipid levels through interaction with physical activity; higher levels of physical activity enhance the HDL cholesterol-increasing effects of the CLASP1, LHX1, and SNTA1 loci and attenuate the LDL cholesterol-increasing effect of the CNTNAP2 locus. The CLASP1, LHX1, and SNTA1 regions harbor genes linked to muscle function and lipid metabolism. Our results elucidate the role of physical activity interactions in the genetic contribution to blood lipid levels.
  •  
2.
  •  
3.
  • Bauren, G, et al. (författare)
  • Demonstration of a dynamic, transcription-dependent organization of pre-mRNA splicing factors in polytene nuclei
  • 1996
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 133:5, s. 929-941
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the dynamic organization of pre-mRNA splicing factors in the intact polytene nuclei of the dipteran Chironomus tentans. The snRNPs and an SR non-snRNP splicing factor are present in excess, mainly distributed throughout the interchromatin. Approximately 10% of the U2 snRNP and an SR non-snRNP splicing factor are associated with the chromosomes, highly enriched in active gene loci where they are bound to RNA. We demonstrate that the splicing factors are specifically recruited to a defined gene upon induction of transcription during physiological conditions. Concomitantly, the splicing factors leave gene loci in which transcription is turned off. We also demonstrated that upon general transcription inhibition, the splicing factors redistribute from active gene loci to the interchromatin. Our findings demonstrate the dynamic intranuclear organization of splicing factors and a tight linkage between transcription and the intranuclear organization of the splicing machinery.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Gu, WQ, et al. (författare)
  • Pancreatic β Cells Inhibit Glucagon Secretion from α Cells: An In Vitro Demonstration of α-β Cell Interaction
  • 2021
  • Ingår i: Nutrients. - : MDPI AG. - 2072-6643. ; 13:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Interactions between endocrine α and β cells are critical to their secretory function in vivo. The interactions are highly regulated, although yet to be fully understood. In this study, we aim to assess the impact of α and β cell co-culture on hormone secretion. Mouse clonal cell lines α-TC6-1 (α cell line) and MIN-6 (β cell line) were cultured independently or in combination in a medium containing 5.5, 11.1, or 25 mM glucose, respectively. After 72 h, hormone release was measured using insulin and glucagon secretion assays, the cell distribution was visualized by inverted microscopy and an immunocytochemistry assay, and changes in gene expressions were assessed using the RT-PCR technique. The co-culture of the two cell lines caused a decrease in glucagon secretion from α-TC1-6 cells, while no effect on insulin secretion from MIN-6 cells was revealed. Both types of cells were randomly scattered throughout the culture flask, unlike in mice islets in vivo where β cells cluster in the core and α cells are localized at the periphery. During the α–β cell co-culture, the gene expression of glucagon (Gcg) decreased significantly. We conclude that islet β cells suppress glucagon secretion from α cells, apparently via direct cell-to-cell contact, of which the molecular mechanism needs further verification.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy