SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gu Xiaorong) "

Sökning: WFRF:(Gu Xiaorong)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feng, Chungang, et al. (författare)
  • A cis-Regulatory Mutation of PDSS2 Causes Silky-Feather in Chickens
  • 2014
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 10:8, s. e1004576-
  • Tidskriftsartikel (refereegranskat)abstract
    • Silky-feather has been selected and fixed in some breeds due to its unique appearance. This phenotype is caused by a single recessive gene (hookless, h). Here we map the silky-feather locus to chromosome 3 by linkage analysis and subsequently fine-map it to an 18.9 kb interval using the identical by descent (IBD) method. Further analysis reveals that a C to G transversion located upstream of the prenyl (decaprenyl) diphosphate synthase, subunit 2 (PDSS2) gene is causing silky-feather. All silky-feather birds are homozygous for the G allele. The silky-feather mutation significantly decreases the expression of PDSS2 during feather development in vivo. Consistent with the regulatory effect, the C to G transversion is shown to remarkably reduce PDSS2 promoter activity in vitro. We report a new example of feather structure variation associated with a spontaneous mutation and provide new insight into the PDSS2 function.
  •  
2.
  • Guo, Ying, et al. (författare)
  • A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens
  • 2016
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation.
  •  
3.
  • Imsland, Freyja, et al. (författare)
  • The Rose-comb Mutation in Chickens Constitutes a Structural Rearrangement Causing Both Altered Comb Morphology and Defective Sperm Motility
  • 2012
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:6, s. e1002775-
  • Tidskriftsartikel (refereegranskat)abstract
    • Rose-comb, a classical monogenic trait of chickens, is characterized by a drastically altered comb morphology compared to the single-combed wild-type. Here we show that Rose-comb is caused by a 7.4 Mb inversion on chromosome 7 and that a second Rose-comb allele arose by unequal crossing over between a Rose-comb and wild-type chromosome. The comb phenotype is caused by the relocalization of the MNR2 homeodomain protein gene leading to transient ectopic expression of MNR2 during comb development. We also provide a molecular explanation for the first example of epistatic interaction reported by Bateson and Punnett 104 years ago, namely that walnut-comb is caused by the combined effects of the Rose-comb and Pea-comb alleles. Transient ectopic expression of MNR2 and SOX5 (causing the Pea-comb phenotype) occurs in the same population of mesenchymal cells and with at least partially overlapping expression in individual cells in the comb primordium. Rose-comb has pleiotropic effects, as homozygosity in males has been associated with poor sperm motility. We postulate that this is caused by the disruption of the CCDC108 gene located at one of the inversion breakpoints. CCDC108 is a poorly characterized protein, but it contains a MSP (major sperm protein) domain and is expressed in testis. The study illustrates several characteristic features of the genetic diversity present in domestic animals, including the evolution of alleles by two or more consecutive mutations and the fact that structural changes have contributed to fast phenotypic evolution.
  •  
4.
  • Li, Jinxiu, et al. (författare)
  • A Discovery of a Genetic Mutation Causing Reduction of Atrogin-1 Expression in Broiler Chicken Muscle
  • 2019
  • Ingår i: Frontiers in Genetics. - : FRONTIERS MEDIA SA. - 1664-8021. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • Chickens are bred all over the world and have significant economic value as one of the major agricultural animals. The growth rate of commercial broiler chickens is several times higher than its Red Jungle fowl (RJF) ancestor. To further improve the meat production of commercial chickens, it is quite important to decipher the genetic mechanism of chicken growth traits. In this study, we found that broiler chickens exhibited lower levels of E3 ubiquitin ligase muscle atrophy F-box (MAFbx or Atrogin-1) relative to its RJF ancestor. As a ubiquitin ligase, Atrogin-1 plays a crucial role in muscle development in which its up-regulation often indicates the activation of muscle atrophic pathways. Here, we showed that the Atrogin-1 expression variance partly affects chicken muscle growth rates among different breeds. Furthermore, we demonstrated that the reduced expression of Atrogin-1 in broiler chickens was ascribed to a single nucleotide polymorphism (SNP), which inhibited the binding of transcription regulators and attenuated the enhancer activity. The decreased Atrogin-1 in broiler chickens suppresses the catabolism of muscle protein and preserves muscle mass. Our study facilitates the understanding of the molecular mechanism of chicken muscle development and has a high translational impact in chicken breeding.
  •  
5.
  • Wang, Yanqiang, et al. (författare)
  • The Crest Phenotype in Chicken Is Associated with Ectopic Expression of HOXC8 in Cranial Skin
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:4, s. e34012-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Crest phenotype is characterised by a tuft of elongated feathers atop the head. A similar phenotype is also seen in several wild bird species. Crest shows an autosomal incompletely dominant mode of inheritance and is associated with cerebral hernia. Here we show, using linkage analysis and genome-wide association, that Crest is located on the E22C19W28 linkage group and that it shows complete association to the HOXC-cluster on this chromosome. Expression analysis of tissues from Crested and non-crested chickens, representing 26 different breeds, revealed that HOXC8, but not HOXC12 or HOXC13, showed ectopic expression in cranial skin during embryonic development. We propose that Crest is caused by a cis-acting regulatory mutation underlying the ectopic expression of HOXC8. However, the identification of the causative mutation(s) has to await until a method becomes available for assembling this chromosomal region. Crest is unfortunately located in a genomic region that has so far defied all attempts to establish a contiguous sequence.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy