SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guan Pengyu) "

Sökning: WFRF:(Guan Pengyu)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • da Silva, Edson P., et al. (författare)
  • Combined Optical and Electrical Spectrum Shaping for High-Baud-Rate Nyquist-WDM Transceivers
  • 2016
  • Ingår i: IEEE Photonics Journal. - : Institute of Electrical and Electronics Engineers (IEEE). - 1943-0655. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We discuss the benefits and limitations of optical time-division multiplexing (OTDM) techniques based on the optical generation of a periodic train of sinc pulses for wavelength-division multiplexing (WDM) transmission at high baud rates. It is shown how the modulated OTDM spectrum bandwidth is related to the optical comb parameters and the pulse shaping of the modulating waveforms in the electrical domain. Such dependence may result in broadening of the modulated spectra, which can degrade the performance of Nyquist-WDM systems due to interchannel crosstalk penalties. However, it is shown and experimentally demonstrated that the same technique of optical pulse train generation can be allied with digital pulse shaping to improve the confinement of the modulated spectrum toward the Nyquist limit independently of the number of OTDM tributaries used. To investigate the benefits of the proposed approach, we demonstrate the first WDM Nyquist-OTDM signal generation based on the periodic train of sinc pulses and electrical spectrum shaping. Straight line transmission of five 112.5-Gbd Nyquist-OTDM dual-polarization quadrature phase-shift keying (QPSK) channels is demonstrated over a dispersion uncompensated link up to 640 km, with full-field coherent detection at the receiver. It is shown that such a design strategy effectively improves the spectral confinement of the modulated OTDM signal, providing a minimum intercarrier crosstalk penalty of 1.5 dB in baud-rate-spaced Nyquist-WDM systems.
  •  
2.
  • Jia, Shi, et al. (författare)
  • 0.4 THz Photonic-Wireless Link with 106 Gbit/s Single Channel Bitrate
  • 2018
  • Ingår i: Journal of Lightwave Technology. - : IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC. - 0733-8724 .- 1558-2213. ; 36:2, s. 610-616
  • Tidskriftsartikel (refereegranskat)abstract
    • To accommodate the demand of exponentially increased global wireless data traffic, the prospective data rates for wireless communication in the market place will soon reach 100 Gbit/s and beyond. In the lab environment, wireless transmission throughput has been elevated to the level of over 100 Gbit/s attributed to the development of photonic-assisted millimeter wave (MMW) and THz technologies. However, most of recent demonstrations with over 100 Gbit/s data rates are based on spatial or frequency division multiplexing techniques, resulting in increased system's complexity and energy consumption. Here, we experimentally demonstrate a single channel 0.4 THz photonic-wireless link achieving a net data rate of beyond 100 Gbit/s by using a single pair of THz emitter and receiver, without employing any spatial/frequency division multiplexing techniques. The high throughput up to 106 Gbit/s within a single THz channel is enabled by combining spectrally efficient modulation format, ultra-broadband THz transceiver and advanced digital signal processing (DSP) routine. Besides that, our demonstration from system-wide implementation viewpoint also features high transmission stability, and hence shows its great potential to not only decrease the system's complexity, but also meet the requirements of prospective data rates for bandwidth-hungry short-range wireless applications.
  •  
3.
  • Kristanl, Matej, et al. (författare)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • Ingår i: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy