SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gubanski S.M.) "

Sökning: WFRF:(Gubanski S.M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Gubanski, S. M., et al. (författare)
  • Performance and diagnostics of biologically contaminated insulators
  • 2007
  • Ingår i: ICPADM 2006. - : IEEE. - 1424401895 - 9781424401895 ; , s. 23-30
  • Konferensbidrag (refereegranskat)abstract
    • Biological growth has been observed on insulators installed all over the world. However, so far, its impact on insulator performance is not well known. This paper summarizes a majority of the work published in the field. Based on the gathered experiences, it can be concluded that microbiological growth is unlikely to cause severe degradation of the rubber housings of non-ceramic insulators. Furthermore, it seems that the impact of growth on the insulator performance is rather low. Techniques available for detection and characterisation of growth on insulators are also described and discusses. Among those, laser-induced fluorescence (LIF) spectroscopy has been found to give good results in remote detection of micro-organisms.
  •  
3.
  • Gubanski, S. M., et al. (författare)
  • Performance of biologically contaminated high voltage insulators
  • 2006
  • Konferensbidrag (refereegranskat)abstract
    • Biological growth has been observed on insulators installed all over the world. However, so far, its impact on insulator performance is not well known. This paper summarizes the work published in the field. Based on the gathered experiences, it can be concluded that microbiological growth is unlikely to cause severe degradation of the rubber housings of non-ceramic insulators. Furthermore, it seems that the impact of growth on the insulator performance is rather low. Techniques available for detection and characterisation of growth on insulators are also described and discusses. Among those, laser-induced fluorescence (LIF) spectroscopy has been found to give good results in remote detection of micro-organisms.
  •  
4.
  •  
5.
  • Gustavsson, T. G., et al. (författare)
  • Aging of silicone rubber under ac or dc voltages in a coastal environment
  • 2001
  • Ingår i: IEEE transactions on dielectrics and electrical insulation. - : Institute of Electrical and Electronics Engineers (IEEE). - 1070-9878 .- 1558-4135. ; 8:6, s. 1029-1039
  • Tidskriftsartikel (refereegranskat)abstract
    • Material samples of silicone rubber with known differences in their composition, i.e. different filler content and extra silicone oil added, have been aged at the Anneberg field station on the west coast of Sweden. ac or dc voltage supplied to cylindrical samples at stress levels of 50 or 100 V/mm. The work includes laboratory examination of material changes together with on-site, visual observations and leakage current measurements. Material samplings for the laboratory tests were made after 18 months of electrical aging, which went on for one more year in order to gather further information on the long-term electrical performance of the material. The dominant aging factor was the level of the applied stress, independent of ac or dc voltage. The dc stressed samples showed a higher leakage current and exhibited larger surface degradation compared with samples exposed to ac voltage. The material parameter, an addition of extra silicone oil, initially lead to an increase in adhesion of pollutants, whereas the overall performance was improved by the higher suppression of the leakage current related to oligomer diffusion. Samples with lower level of alumina trihydrate (ATH) exhibited a delayed onset of degradation, but once damaged they degraded more rapidly than the specimens with a higher ATH content. Infrared spectroscopy showed that the ATH was completely consumed at the eroded surface regions. The aging of the surfaces was further assessed by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The low molar mass siloxanes present in the pollution layer were extracted and analyzed by size exclusion chromatography and gas chromatography-mass spectroscopy. The results indicated that the main degradation factor was thermal depolymerization activated by electrical discharges. Oxidative crosslinking of the silicone rubber, usually attributed to surface close corona discharges, appeared to have played a minor role.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy