SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gucciardo E) "

Sökning: WFRF:(Gucciardo E)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Gizaw, NY, et al. (författare)
  • PROX1 transcription factor controls rhabdomyosarcoma growth, stemness, myogenic properties and therapeutic targets
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 1091-6490. ; 119:49, s. e2116220119-
  • Tidskriftsartikel (refereegranskat)abstract
    • Rhabdomyosarcoma (RMS) is an aggressive pediatric soft-tissue cancer with features of skeletal muscle. Because of poor survival of RMS patients and severe long-term side effects of RMS therapies, alternative RMS therapies are urgently needed. Here we show that the prospero-related homeobox 1 (PROX1) transcription factor is highly expressed in RMS tumors regardless of their cell type of origin. We demonstrate that PROX1 is needed for RMS cell clonogenicity, growth and tumor formation. PROX1 gene silencing repressed several myogenic and tumorigenic transcripts and transformed the RD cell transcriptome to resemble that of benign mesenchymal stem cells. Importantly, we found that fibroblast growth factor receptors (FGFR) mediated the growth effects of PROX1 in RMS. Because of receptor cross-compensation, paralog-specific FGFR inhibition did not mimic the effects of PROX1 silencing, whereas a pan-FGFR inhibitor ablated RMS cell proliferation and induced apoptosis. Our findings uncover the critical role of PROX1 in RMS and offer insights into the mechanisms that regulate RMS development and growth. As FGFR inhibitors have already been tested in clinical phase I/II trials in other cancer types, our findings provide an alternative option for RMS treatment.
  •  
4.
  •  
5.
  • Gucciardo, E, et al. (författare)
  • Lymphatic Vascular Structures: A New Aspect in Proliferative Diabetic Retinopathy
  • 2018
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 19:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Diabetic retinopathy (DR) is the most common diabetic microvascular complication and major cause of blindness in working-age adults. According to the level of microvascular degeneration and ischemic damage, DR is classified into non-proliferative DR (NPDR), and end-stage, proliferative DR (PDR). Despite advances in the disease etiology and pathogenesis, molecular understanding of end-stage PDR, characterized by ischemia- and inflammation-associated neovascularization and fibrosis, remains incomplete due to the limited availability of ideal clinical samples and experimental research models. Since a great portion of patients do not benefit from current treatments, improved therapies are essential. DR is known to be a complex and multifactorial disease featuring the interplay of microvascular, neurodegenerative, metabolic, genetic/epigenetic, immunological, and inflammation-related factors. Particularly, deeper knowledge on the mechanisms and pathophysiology of most advanced PDR is critical. Lymphatic-like vessel formation coupled with abnormal endothelial differentiation and progenitor cell involvement in the neovascularization associated with PDR are novel recent findings which hold potential for improved DR treatment. Understanding the underlying mechanisms of PDR pathogenesis is therefore crucial. To this goal, multidisciplinary approaches and new ex vivo models have been developed for a more comprehensive molecular, cellular and tissue-level understanding of the disease. This is the first step to gain the needed information on how PDR can be better evaluated, stratified, and treated.
  •  
6.
  • Gucciardo, E, et al. (författare)
  • Proactive for invasion: Reuse of matrix metalloproteinase for structural memory
  • 2016
  • Ingår i: The Journal of cell biology. - : Rockefeller University Press. - 1540-8140 .- 0021-9525. ; 213:1, s. 11-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Migratory cells translocate membrane type-1 matrix metalloproteinase (MT1-MMP) to podosomes or invadosomes to break extracellular matrix barriers. In this issue, El Azzouzi et al. (2016. J. Cell. Biol. http://dx.doi.org/10.1083/jcb.201510043) describe an unexpected function for the MT1-MMP cytoplasmic domain in imprinting spatial memory for podosome reformation via assembly in membrane islets.
  •  
7.
  • Jukonen, J, et al. (författare)
  • Aggressive and recurrent ovarian cancers upregulate ephrinA5, a non-canonical effector of EphA2 signaling duality
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 8856-
  • Tidskriftsartikel (refereegranskat)abstract
    • Erythropoietin producing hepatocellular (Eph) receptors and their membrane-bound ligands ephrins are variably expressed in epithelial cancers, with context-dependent implications to both tumor-promoting and -suppressive processes in ways that remain incompletely understood. Using ovarian cancer tissue microarrays and longitudinally collected patient cells, we show here that ephrinA5/EFNA5 is specifically overexpressed in the most aggressive high-grade serous carcinoma (HGSC) subtype, and increased in the HGSC cells upon disease progression. Among all the eight ephrin genes, high EFNA5 expression was most strongly associated with poor overall survival in HGSC patients from multiple independent datasets. In contrast, high EFNA3 predicted improved overall and progression-free survival in The Cancer Genome Atlas HGSC dataset, as expected for a canonical inducer of tumor-suppressive Eph receptor tyrosine kinase signaling. While depletion of either EFNA5 or the more extensively studied, canonically acting EFNA1 in HGSC cells increased the oncogenic EphA2-S897 phosphorylation, EFNA5 depletion left unaltered, or even increased the ligand-dependent EphA2-Y588 phosphorylation. Moreover, treatment with recombinant ephrinA5 led to limited EphA2 tyrosine phosphorylation, internalization and degradation compared to ephrinA1. Altogether, our results suggest a unique function for ephrinA5 in Eph-ephrin signaling and highlight the clinical potential of ephrinA5 as a cell surface biomarker in the most aggressive HGSCs.
  •  
8.
  •  
9.
  • Korhonen, A, et al. (författare)
  • Proliferative diabetic retinopathy transcriptomes reveal angiogenesis, anti-angiogenic therapy escape mechanisms, fibrosis and lymphatic involvement
  • 2021
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11:1, s. 18810-
  • Tidskriftsartikel (refereegranskat)abstract
    • Proliferative diabetic retinopathy (PDR) is a sight-threatening diabetic complication in urgent need of new therapies. In this study we identify potential molecular mechanisms and target candidates in the pathogenesis of PDR fibrovascular tissue formation. We performed mRNA sequencing of RNA isolated from eleven excised fibrovascular membranes of type 1 diabetic PDR patients and two non-diabetic patients with rhegmatogenous retinal detachment with proliferative vitreoretinopathy. We determined differentially expressed genes between these groups and performed pathway and gene ontology term enrichment analyses to identify potential underlying mechanisms, pathways, and regulators. Multiple pro-angiogenic processes, including VEGFA-dependent and -independent pathways, as well as processes related to lymphatic development, epithelial to mesenchymal transition (EMT), wound healing, inflammation, fibrosis, and extracellular matrix (ECM) composition, were overrepresented in PDR. Overrepresentation of different angiogenic processes may help to explain the transient nature of the benefits that many patients receive from current intravitreal anti-angiogenic therapies, highlighting the importance of combinatorial treatments. Enrichment of genes and pathways related to lymphatic development indicates that targeting lymphatic involvement in PDR progression could have therapeutic relevance. Together with overrepresentation of EMT and fibrosis as well as differential ECM composition, these findings demonstrate the complexity of PDR fibrovascular tissue formation and provide avenues for the development of novel treatments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy