SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guedron S.) "

Sökning: WFRF:(Guedron S.)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guedron, S., et al. (författare)
  • Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungará, Chile)
  • 2019
  • Ingår i: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 662, s. 903-914
  • Tidskriftsartikel (refereegranskat)abstract
    • Volcanismis one of the major natural processes emitting mercury (Hg) to the atmosphere, representing a significant component of the global Hg budget. The importance of volcanic eruptions for local-scale Hg deposition was investigated using analyses of Hg, inorganic elemental tracers, and organic biomarkers in a sediment sequence from Lake Chungara (4520 m a.s.l.). Environmental change and Hg deposition in the immediate vicinity of the Parinacota volcano were reconstructed over the last 2700 years, encompassing the pre-anthropogenic and anthropogenic periods. Twenty eruptions delivering large amounts of Hg (1 to 457 mu g Hg m(-2) yr(-1) deposited at the timescale of the event) were locally recorded. Peaks of Hg concentration recorded after most of the eruptions were attributed to a decrease in sedimentation rate together with the rapid re-oxidation of gaseous elemental Hg and deposition with fine particles and incorporation into lake primary producers. Over the study period, the contribution of volcanic emissions has been estimated as 32% of the total Hg input to the lake. Sharp depletions in primary production occurred at each eruption, likely resulting from massive volcaniclastic inputs and changes in the lake-water physico-chemistry. Excluding the volcanic deposition periods, Hg accumulation rates rose from natural background values (1.9 +/- 0.5 mu g m(-2) yr(-1)) by a factor of 2.3 during the pre-colonial mining period (1400-900 yr cal. BP), and by a factor of 6 and 7.6, respectively, during the Hispanic colonial epoch (400-150 yr cal. BP) and the industrial era (similar to 140 yr cal. BP to present). Altogether, the dataset indicates that lake primary production has been the main, but not limiting, carrier for Hg to the sediment. Volcanic activity and climate change are only secondary drivers of local Hg deposition relative to the magnitude of regional and global anthropogenic emissions.
  •  
2.
  • Guédron, S., et al. (författare)
  • Reconstructing two millennia of copper and silver metallurgy in the Lake Titicaca region (Bolivia/Peru) using trace metals and lead isotopic composition
  • 2021
  • Ingår i: Anthropocene. - : Elsevier. - 2213-3054. ; 34
  • Tidskriftsartikel (refereegranskat)abstract
    • Copper, silver, and gold exploitation has been a foundation of economic and socio-cultural development of Andean societies, at least for the last three millennia. The main centers of pre-colonial metallurgy are well-known from archeological artifacts, but temporal gaps inherent in this record handicap a finer understanding of the modalities of ore exploitation by succeeding civilizations. A continuous record over time of trace metals emitted during ore smelting operations make lake sediments excellent candidates to fill those gaps. Two millennia of metallurgy were reconstructed from atmospherically derived metals together with lead (Pb) isotope ratios in two dated sediment cores from Lake Titicaca. The first evidence for metallurgy is found during the apogee of the Tiwanaku state (AD 800–1150), with a higher copper (Cu) accumulation that can be attributed to the smelting of local Cu ores, based on Pb isotopic fingerprinting. During the Late Intermediate Period (AD 1150–1450), recorded peaks in metal deposition that persisted for ∼ twenty years show that mining activities were intensive but discontinuous. Pb isotope ratios suggest diversified extractive activities, mainly located in the southern part of the central Altiplano. Finally, the most intense mining epoch began during the Inca Empire (ca. AD 1500) and lasted until the end of the Colonial Period (AD 1830), with unprecedented metal deposition over this interval. Pb isotope fingerprinting shows that mining operations occurred mainly in the Lake Titicaca and Potosi areas and were responsible for metal emissions recorded in the entire Altiplano, as evidenced by other studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy