SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gueskine Viktor) "

Sökning: WFRF:(Gueskine Viktor)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Fareed, et al. (författare)
  • Manufacturing Poly(3,4-Ethylenedioxythiophene) Electrocatalytic Sheets for Large-Scale H2O2 Production
  • 2022
  • Ingår i: Advanced Sustainable Systems. - : John Wiley and Sons Inc. - 2366-7486. ; 6:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Producing thick films of conducting polymers by a low-cost manufacturing technique would enable new applications. However, removing huge solvent volume from diluted suspension or dispersion (1–3 wt%) in which conducting polymers are typically obtained is a true manufacturing challenge. In this work, a procedure is proposed to quickly remove water from the conducting polymer poly(3,4-ethylenedioxythiophene:poly(4-styrene sulfonate) (PEDOT:PSS) suspension. The PEDOT:PSS suspension is first flocculated with 1 m H2SO4 transforming PEDOT nanoparticles (≈50–500 nm) into soft microparticles. A filtration process inspired by pulp dewatering in a paper machine on a wire mesh with apertures dimension between 60 µm and 0.5 mm leads to thick free-standing films (≈0.5 mm). Wire mesh clogging that hinders dewatering (known as dead-end filtration) is overcome by adding to the flocculated PEDOT:PSS dispersion carbon fibers that aggregate and form efficient water channels. Moreover, this enables fast formation of thick layers under simple atmospheric pressure filtration, thus making the process truly scalable. Thick freestanding PEDOT films thus obtained are used as electrocatalysts for efficient reduction of oxygen to hydrogen peroxide, a promising green chemical and fuel. The inhomogeneity of the films does not affect their electrochemical function. © 2021 The Authors. 
  •  
2.
  • Che, Canyan, 1988- (författare)
  • Electrochemical Reactions of Quinones at Conducting Polymer Electrodes
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Proton-coupled multielectron transfer reactions are of great abundance in Nature. In particular, two-proton-two-electron transfers in quinone/hydroquinone redox couples are behind oxidative phosphorylation (ADP-to-ATP) and photosystem II. The redox processes of neurotransmitters, as a platform for brain activity read-out, are two-proton two-electron transfers of quinones. Moreover, humic acids, which constitute a major organic fraction of soil, turf, coal, and lignin, which forms as a large-scale surplus product from forest and paper industry, contain a large quantity of polyphenols, which can undergo the exchange of two electrons per aromatic ring accompanied with transfers of two protons. This makes polyphenol-based biopolymers, such as lignin, promising green-chemistry renewable materials for electrical energy storage or generation. The application of intact or depolymerized polyphenols in electrical energy devices such as fuel cells and redox flow batteries requires appropriate electrode materials to ensure efficient proton-coupled electron transfer reactions occurring at the solid-liquid interface. Moreover, investigation of the biological quinones reaction calls for porous, soft, biocompatible materials as implantable devices to reduce the rejection reaction and pain.At common electrode materials such as platinum and carbons, quinone/hydroquinone redox processes are rather irreversible; in addition, platinum is very costly. Conducting polymers (CPs), poly(3,4-ethylenedioxythiophene) (PEDOT) in particular, offer an attractive option as metal-free electrode material for these reactions due to their molecular porosity, high electrical and ionic conductivity, solution processability, resistance to acid media, as well as high atomic abundance of their constituents.This thesis explores the possibility of utilizing CPs as electrode materials for driving various quinone redox reactions. Firstly, we studied the electrocatalytic activity and mechanism of PEDOTs for the generic hydroquinone reaction and their application in a fuel cell. Secondly, the mechanism of integrating lignosulfonate (LS) into CP matrices and optimization strategies were explored in order to boost energy storage capacity. Thirdly, we attained mechanistic understanding of the influence of ionic transport and proton management on the thermodynamics and kinetics of the electrocatalysis on CPs, thereby providing steps towards the design of quinone-based electrical energy storage devices, such as organic redox flow batteries (ORFB).
  •  
3.
  • Che, Canyan, 1988-, et al. (författare)
  • Twinning Lignosulfonate with a Conducting Polymer via Counter-Ion Exchange for Large-Scale Electrical Storage
  • 2019
  • Ingår i: Advanced Sustainable Systems. - : Wiley-VCH Verlag. - 2366-7486. ; 3:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Lignosulfonate (LS) is a large-scale surplus product of the forest and paper industries, and has primarily been utilized as a low-cost plasticizer in making concrete for the construction industry. LS is an anionic redox-active polyelectrolyte and is a promising candidate to boost the charge capacity of the positive electrode (positrode) in redox-supercapacitors. Here, the physical-chemical investigation of how this biopolymer incorporates into the conducting polymer PEDOT matrix, of the positrode, by means of counter-ion exchange is reported. Upon successful incorporation, an optimal access to redox moieties is achieved, which provides a 63% increase of the resulting stored electrical charge by reversible redox interconversion. The effects of pH, ionic strength, and concentrations, of included components, on the polymer–polymer interactions are optimized to exploit the biopolymer-associated redox currents. Further, the explored LS-conducting polymer incorporation strategy, via aqueous synthesis, is evaluated in an up-scaling effort toward large-scale electrical energy storage technology. By using an up-scaled production protocol, integration of the biopolymer within the conducting polymer matrix by counter-ion exchange is confirmed and the PEDOT-LS synthesized through optimized strategy reaches an improved charge capacity of 44.6 mAh g−1. 
  •  
4.
  • Ding, Penghui, 1994- (författare)
  • Organic Materials-based Electrochemical Flow Cells for Energy Applications
  • 2024
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • To meet the 2015 Paris Agreement requirement of limiting global warming to 1.5 °C, the transition from fossil fuels to renewables (solar and wind) necessitates a rapid change of the energy landscape. The decline of the price for electricity from solar panels and wind turbines is so fast over the last decade that green electricity competes economically with electricity generated from coal, oil, and gas. Considering the output from renewable energy sources is electric current, the conversion and storage of green electricity is the key to the paradigm shift. Both conversion and storage imply transformation of electrical energy into chemical energy of molecules. The former means production of multipurpose energetic molecules. Here such a molecule is hydrogen peroxide, a green oxidant, and our aim is to advance its electrochemical production. The latter is concerned with making the chemical energy readily transformable back into electricity in batteries. In electrochemistry, H-cells are usually used in screening materials and mechanistic understanding of relevant processes. However, the results of H-cell studies sometimes do not directly translate to upscaled systems, such as flow cells. Electrochemical flow cells are attracting attention due to the ability to decouple capacity and power, the long operation time, and the decreased diffusion layer thickness and ohmic resistance. Most flow cells today use inorganic materials, and they are expensive and based on unsustainable mining processes in some geographically concentrated regions. Organic materials, on the contrary, are cheap and readily designed via molecular engineering and electro-organic synthesis. In this thesis, organic materials-based flow cells will be constructed for energy conversion and storage studies.   We start with making free-standing poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) films with a thickness >50 μm by vacuum filtration, which then are used in electrochemical production of hydrogen peroxide (H2O2) in a H-cell. Due to some drawbacks listed above, we shifted our focus to flow cells. The cathodic generation of H2O2 is combined with oxygen evolution reaction (OER) using nickel (II) oxide (NiO) to explore the possibility of using a polymer material in a flow cell environment. This flow cell system could reach a faradaic efficiency of 80% and the system loss is analyzed from different angles. However, the OER is kinetically sluggish and would need precious catalysts to drive the reaction. Instead of turning to precious catalysts, we proposed to replace the OER in the device with the oxidation of a water-soluble organic molecule oxidation, 4,5-dihydroxy-1,3-benzenedisulfonic acid disodium salt monohydrate (tiron/BQDS). The tiron oxidation is fast and does not need a catalyst. The tiron transport phenomena are investigated and we find that migration—a less recognized player—has a big role in regulating tiron transport. The last part of the thesis introduces a biomass-based membrane made from cellulose for a tiron-based aqueous organic redox flow battery. The environmentally friendly nanocellulose membranes display reduced crossover of quinone redox couples, higher discharge capacity, and better reusability than the commercial fluoropolymer Nafion™ 115 membranes.   We hope the present thesis, which deals with various aspects of flow cells from organic material design to system transport phenomena, will stimulate more people to work on this fascinating topic, paving the way for electrification of everything by tunable and sustainable organic molecules. 
  •  
5.
  • Fahlman, Mats, 1967-, et al. (författare)
  • Interfaces in organic electronics
  • 2019
  • Ingår i: Nature Reviews Materials. - : Nature Publishing Group. - 2058-8437. ; 4:10, s. 627-650
  • Forskningsöversikt (refereegranskat)abstract
    • Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.
  •  
6.
  • Ghorbani Shiraz, Hamid, et al. (författare)
  • Towards electrochemical hydrogen storage in liquid organic hydrogen carriers via proton-coupled electron transfers
  • 2022
  • Ingår i: Journal of Energy Challenges and Mechanics. - : Elsevier. - 2056-9386. ; 73, s. 292-300
  • Tidskriftsartikel (refereegranskat)abstract
    • Green hydrogen is identified as one of the prime clean energy carriers due to its high energy density and a zero emission of CO2. A possible solution for the transport of H2 in a safe and low-cost way is in the form of liquid organic hydrogen carriers (LOHCs). As an alternative to loading LOHC with H2 via a two-step procedure involving preliminary electrolytic production of H2 and subsequent chemical hydrogenation of the LOHC, we explore here the possibility of electrochemical hydrogen storage (EHS) via conversion of proton of a proton donor into a hydrogen atom involved in covalent bonds with the LOHC (R) via a protoncoupled electron transfer (PCET) reaction: . We chose 9-fluorenone/ fluorenol (Fnone/Fnol) conversion as such a model PCET reaction. The electrochemical activation of Fnone via two sequential electron transfers was monitored with in-situ and operando spectroscopies in absence and in presence of different alcohols as proton donors of different reactivity, which enabled us to both quantify and get the mechanistic insight on PCET. The possibility of hydrogen extraction from the loaded carrier molecule was illustrated by chemical activation.
  •  
7.
  • Ghosh, Sarbani, et al. (författare)
  • Electronic Structures and Optical Absorption of N-Type Conducting Polymers at Different Doping Levels
  • 2019
  • Ingår i: The Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 123:25, s. 15467-15476
  • Tidskriftsartikel (refereegranskat)abstract
    • Theoretical understanding of the electronic structure and optical transitions in n-doped conducting polymers is still controversial for polaronic and bipolaronic states and is completely missing for the case of a high doping level. In the present paper, the electronic structure and optical properties of the archetypical n-doped conducting polymer, double-stranded benzimidazo-benzophenanthroline ladder (BBL), are studied using the density functional theory (DFT) and the time dependent DFT method. We find that a polaronic state in the BBL chain is a spin-resolved doublet where the spin degeneracy is lifted. The ground state of two electrons corresponds to a triplet polaron pair, which is in stark contrast to a commonly accepted picture where two electrons are postulated to form a spinless bipolaron. The total spin gradually increases until the reduction level reaches c(red) = 100% (i.e., one electron per monomer unit). With further increase of the reduction level, the total spin decreases until it becomes 0 for the reduction level c(red) = 200%. The calculated results reproduce the experimentally observed spin signal without any phenomenological parameters. A detailed analysis of the evolution of the electronic structure of BBL and its absorption spectra with increase in reduction level is presented. The calculated UV-vis-NIR spectra are compared with the available experimental results. The electronic structure and optical absorption for different reduction levels presented here are generic to a wide class of conducting polymers, which is illustrated by the corresponding calculations for another archetypical conducting polymer, poly(3,4-ethylenedioxythiophene) (best known as PEDOT).
  •  
8.
  • Gueskine, Viktor, et al. (författare)
  • Molecular Oxygen Activation at a Conducting Polymer: Electrochemical Oxygen Reduction Reaction at PEDOT Revisited, a Theoretical Study
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:24, s. 13263-13272
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular oxygen requires activation in order to be reduced, which prompts extensive searching for efficient and sustainable electrode materials to drive electrochemical oxygen reduction reaction (ORR), of primary importance for energy production and storage. A conjugated polymer PEDOT is a metal-free material for which promising ORR experimental results have been obtained. However, sound theoretical understanding of this reaction at an organic electrode is insufficient, as the concepts inherited from electrocatalysis at transition metals are not necessarily relevant for a molecular organic material. In this work, we critically analyze the basics of electrochemical ORR and build a model for our DFT calculations of the reaction thermodynamics based on this analysis. Altogether, this work leads to a conclusion that outer sphere electron transfer that currently attracts increasing attention in the context of ORR is a viable mechanism at a conducting polymer electrode.
  •  
9.
  • Gueskine, Viktor, et al. (författare)
  • Oxygen reduction reaction at conducting polymer electrodes in a wider context: Insights from modelling concerning outer and inner sphere mechanisms
  • 2023
  • Ingår i: ELECTROCHEMICAL SCIENCE ADVANCES. - : WILEY. - 2698-5977. ; 3:2
  • Forskningsöversikt (refereegranskat)abstract
    • Practical interest in oxygen reduction reaction (ORR) has traditionally been due to its application at fuel cells' cathode following its complete 4e route to the water. In search of new electrode materials, it was discovered that conducting polymers (CPs) also are capable of driving ORR, though predominantly halting the process at 2e reduction leading to hydrogen peroxide generation. As alternative ways to produce this "green oxidant" are attracting increasing attention, a detailed study of the ORR mechanism at CP electrodes gains importance. Here, we summarize our recent theoretical work on the topic, which underscores the fundamental difference between CP and electrocatalytic metal ORR electrodes. Our insights also bring to us the attention of outer-sphere electron transfer, not unknown but somewhat ignored in the field. We also put the action of CP electrodes in a more general context of chemical ORR and redox mediation responsible for the electrocatalytic ORR mechanism.
  •  
10.
  • Keene, Scott T., et al. (författare)
  • Exploiting mixed conducting polymers in organic and bioelectronic devices
  • 2022
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry. - 1463-9076 .- 1463-9084. ; 24:32, s. 19144-19163
  • Forskningsöversikt (refereegranskat)abstract
    • Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (24)
doktorsavhandling (3)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (27)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Gueskine, Viktor (28)
Berggren, Magnus (12)
Crispin, Xavier (12)
Zozoulenko, Igor (10)
Vagin, Mikhail (8)
Crispin, Xavier, Pro ... (7)
visa fler...
Berggren, Magnus, Pr ... (6)
Vagin, Mikhail, 1976 ... (5)
Wågberg, Lars, 1956- (5)
Erlandsson, Johan (5)
Ail, Ujwala, 1980- (4)
Singh, Amritpal (4)
Tybrandt, Klas (3)
Ding, Penghui (3)
Berggren, Magnus, 19 ... (3)
Ederth, Thomas (3)
Khan, Ziyauddin (3)
Fahlman, Mats (2)
Fabiano, Simone (2)
Engquist, Isak (2)
Liu, Xianjie (2)
Abrahamsson, Tobias (2)
Petsagkourakis, Ioan ... (2)
Wu, Zhixing, 1990- (2)
Björk, Emma, 1981- (2)
Kim, Nara (2)
Say, Mehmet Girayhan (2)
Edberg, Jesper, 1988 ... (2)
Braun, Slawomir (1)
Gladisch, Johannes (1)
Glowacki, Eric (1)
Martinelli, Anna, 19 ... (1)
Simon, Daniel T, 197 ... (1)
Gabrielsson, Roger (1)
Ahmed, Fareed (1)
Warczak, Magdalena (1)
Grimoldi, Andrea, 19 ... (1)
Ederth, Thomas, 1969 ... (1)
Håkansson, Karl (1)
Jafari, Mohammad Jav ... (1)
Fahlman, Mats, 1967- (1)
Odén, Magnus, 1965- (1)
Wang, Suhao (1)
Fabiano, Simone, 198 ... (1)
Brooke, Robert, 1989 ... (1)
Tybrandt, Klas, 1982 ... (1)
Mak, Wing Cheung, 19 ... (1)
Strakosas, Xenofon (1)
Malliaras, George G. (1)
Glowacki, Eric Danie ... (1)
visa färre...
Lärosäte
Linköpings universitet (30)
Kungliga Tekniska Högskolan (5)
RISE (4)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (21)
Teknik (14)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy