SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guieu Cécile) "

Sökning: WFRF:(Guieu Cécile)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baker, Alex R., et al. (författare)
  • Changing atmospheric acidity as a modulator of nutrient deposition and ocean biogeochemistry
  • 2021
  • Ingår i: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 7:28
  • Tidskriftsartikel (refereegranskat)abstract
    • Anthropogenic emissions to the atmosphere have increased the flux of nutrients, especially nitrogen, to the ocean, but they have also altered the acidity of aerosol, cloud water, and precipitation over much of the marine atmosphere. For nitrogen, acidity-driven changes in chemical speciation result in altered partitioning between the gas and particulate phases that subsequently affect long-range transport. Other important nutrients, notably iron and phosphorus, are affected, because their soluble fractions increase upon exposure to acidic environments during atmospheric transport. These changes affect the magnitude, distribution, and deposition mode of individual nutrients supplied to the ocean, the extent to which nutrient deposition interacts with the sea surface microlayer during its passage into bulk seawater, and the relative abundances of soluble nutrients in atmospheric deposition. Atmospheric acidity change therefore affects ecosystem composition, in addition to overall marine productivity, and these effects will continue to evolve with changing anthropogenic emissions in the future.
  •  
2.
  • Benavides, Mar, et al. (författare)
  • Anomalously high abundance of Crocosphaera in the South Pacific Gyre
  • 2022
  • Ingår i: FEMS Microbiology Letters. - : Oxford University Press (OUP). - 0378-1097 .- 1574-6968. ; 369:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The unicellular diazotrophic cyanobacterium Crocosphaera contributes significantly to fixed nitrogen inputs in the oligotrophic ocean. In the western tropical South Pacific Ocean (WTSP), these diazotrophs abound thanks to the phosphorus-rich waters provided by the South Equatorial Current, and iron provided aeolian and subsurface volcanic activity. East of the WTSP, the South Pacific Gyre (SPG) harbors the most oligotrophic and transparent waters of the world's oceans, where only heterotrophic diazotrophs have been reported before. Here, in the SPG, we detected unexpected accumulation of Crocosphaera at 50 m with peak abundances of 5.26 × 105 nifH gene copies l–1. The abundance of Crocosphaera at 50 m was in the same order of magnitude as those detected westwards in the WTSP and represented 100% of volumetric N2 fixation rates. This accumulation at 50 m was likely due to a deeper penetration of UV light in the clear waters of the SPG being detrimental for Crocosphaera growth and N2 fixation activity. Nutrient and trace metal addition experiments did not induce any significant changes in N2 fixation or Crocosphaera abundance, indicating that this population was not limited by the resources tested and could develop in high numbers despite the oligotrophic conditions. Our findings indicate that the distribution of Crocosphaera can extend into subtropical gyres and further understanding of their controlling factors is needed. 
  •  
3.
  • Bonnet, Sophie, et al. (författare)
  • In-depth characterization of diazotroph activity across the western tropical South Pacific hotspot of N-2 fixation (OUTPACE cruise)
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:13, s. 4215-4232
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we report N-2 fixation rates from a similar to 4000 km transect in the western and central tropical South Pacific, a particularly undersampled region in the world ocean. Water samples were collected in the euphotic layer along a west to east transect from 160 degrees E to 160 degrees W that covered contrasting trophic regimes, from oligotrophy in the Melanesian archipelago (MA) waters to ultraoligotrophy in the South Pacific Gyre (GY) waters. N-2 fixation was detected at all 17 sampled stations with an average depth-integrated rate of 631 +/- 286 mu mol Nm(-2) d(-1) (range 196-1153 mu mol Nm(-2) d(-1)) in MA waters and of 85 +/- 79 mu mol Nm(-2) d(-1) (range 18-172 mu mol Nm(-2) d(-1)) in GY waters. Two cyanobacteria, the larger colonial filamentous Trichodesmium and the smaller UCYN-B, dominated the enumerated diazotroph community (>80 %) and gene expression of the nifH gene (cDNA > 10(5) nifH copies L-1) in MA waters. Single-cell isotopic analyses performed by nanoscale secondary ion mass spectrometry (nanoSIMS) at selected stations revealed that Trichodesmium was always the major contributor to N-2 fixation in MA waters, accounting for 47.1-83.8% of bulk N-2 fixation. The most plausible environmental factors explaining such exceptionally high rates of N-2 fixation in MA waters are discussed in detail, emphasizing the role of macro- and micro-nutrient (e.g., iron) availability, seawater temperature and currents.
  •  
4.
  • Caffin, Mathieu, et al. (författare)
  • N-2 fixation as a dominant new N source in the western tropical South Pacific Ocean (OUTPACE cruise)
  • 2018
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 15:8, s. 2565-2585
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed nitrogen (N) budgets in the photic layer of three contrasting stations representing different trophic conditions in the western tropical South Pacific (WTSP) Ocean during austral summer conditions (FebruaryMarch 2015). Using a Lagrangian strategy, we sampled the same water mass for the entire duration of each long-duration (5 days) station, allowing us to consider only vertical exchanges for the budgets. We quantified all major vertical N fluxes both entering (N-2 fixation, nitrate turbulent diffusion, atmospheric deposition) and leaving the photic layer (particulate N export). The three stations were characterized by a strong nitracline and contrasted deep chlorophyll maximum depths, which were lower in the oligotrophic Melanesian archipelago (MA, stations LD A and LD B) than in the ultra-oligotrophic waters of the South Pacific Gyre (SPG, station LD C). N-2 fixation rates were extremely high at both LD A (593 +/- 51 mu mol N m(-2) d(-1)) and LD B (706 +/- 302 mu mol N m(-2)d(-1)), and the diazotroph community was dominated by Trichodesmium. N-2 fixation rates were lower (59 +/- 16 mu mol N m(-2) d(-1)) at LD C, and the diazotroph community was dominated by unicellular N-2-fixing cyanobacteria (UCYN). At all stations, N-2 fixation was the major source of new N (> 90 %) before atmospheric deposition and upward nitrate fluxes induced by turbulence. N-2 fixation contributed circa 1318 % of primary production in the MA region and 3 in the SPG water and sustained nearly all new primary production at all stations. The e ratio (e ratio articulate carbon export / primary production) was maximum at LD A (9.7 ) and was higher than the e ratio in most studied oligotrophic regions (< 5), indicating a high efficiency of the WTSP to export carbon relative to primary production. The direct export of diazotrophs assessed by qPCR of the nifH gene in sediment traps represented up to 30.6 of the PC export at LD A, while their contribution was 5 and < 0.1 % at LD B and LD C, respectively. At the three studied stations, the sum of all N input to the photic layer exceeded the N output through organic matter export. This disequilibrium leading to N accumulation in the upper layer appears as a characteristic of the WTSP during the summer season.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy