SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guillard Pierre) "

Sökning: WFRF:(Guillard Pierre)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wright, Gillian, et al. (författare)
  • The Mid-infrared Instrument for JWST and Its In-flight Performance
  • 2023
  • Ingår i: Publications of the Astronomical Society of the Pacific. - 0004-6280 .- 1538-3873. ; 135:1046
  • Tidskriftsartikel (refereegranskat)abstract
    • The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI.
  •  
2.
  • Berne, Olivier, et al. (författare)
  • PDRs4All : A JWST Early Release Science Program on Radiative Feedback from Massive Stars
  • 2022
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 134:1035
  • Tidskriftsartikel (refereegranskat)abstract
    • Massive stars disrupt their natal molecular cloud material through radiative and mechanical feedback processes. These processes have profound effects on the evolution of interstellar matter in our Galaxy and throughout the universe, from the era of vigorous star formation at redshifts of 1-3 to the present day. The dominant feedback processes can be probed by observations of the Photo-Dissociation Regions (PDRs) where the far-ultraviolet photons of massive stars create warm regions of gas and dust in the neutral atomic and molecular gas. PDR emission provides a unique tool to study in detail the physical and chemical processes that are relevant for most of the mass in inter- and circumstellar media including diffuse clouds, proto-planetary disks, and molecular cloud surfaces, globules, planetary nebulae, and star-forming regions. PDR emission dominates the infrared (IR) spectra of star-forming galaxies. Most of the Galactic and extragalactic observations obtained with the James Webb Space Telescope (JWST) will therefore arise in PDR emission. In this paper we present an Early Release Science program using the MIRI, NIRSpec, and NIRCam instruments dedicated to the observations of an emblematic and nearby PDR: the Orion Bar. These early JWST observations will provide template data sets designed to identify key PDR characteristics in JWST observations. These data will serve to benchmark PDR models and extend them into the JWST era. We also present the Science-Enabling products that we will provide to the community. These template data sets and Science-Enabling products will guide the preparation of future proposals on star-forming regions in our Galaxy and beyond and will facilitate data analysis and interpretation of forthcoming JWST observations.
  •  
3.
  • Joshi, Bhavin A., et al. (författare)
  • Evidence for Shock-heated Gas in the Taffy Galaxies and Bridge from Optical Emission-line IFU Spectroscopy
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 878:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical integral field unit observations of the Taffy system (UGC 12914/15), named for the radio emission that stretches between the two galaxies. Given that these gas-rich galaxies are believed to have recently collided head-on, the pair exhibits a surprisingly normal total (sub-LJRG) IR luminosity (L-FIR similar to 4.5 x 10(10) L-circle dot). Previous observations have demonstrated that a large quantity of molecular and neutral gas has been drawn out of the galaxies into a massive multiphase bridge. We present, for the first time, spatially resolved spectroscopy of the ionized gas in the system. The results show that the ionized gas is highly disturbed kinematically, with gas spread in two main filaments between the two galaxies. The line profiles exhibit widespread double components in both the bridge and parts of the disks of the galaxies. We investigate the spatial distribution of the excitation properties of the ionized gas using emission-line diagnostic diagrams and conclude that a large quantity (up to 40%) of the emission from the entire system is consistent with gas heated in similar to 200 km s(-1) shocks. While the shocked gas is mainly associated with the bridge, there is a significant amount of shocked gas associated with both galaxies. Confirming other multiwavelength indicators, the results suggest that the effects of shocks and turbulence can continue to be felt in a high-speed galaxy collision long after the collision has occurred. The persistence of shocks in the Taffy system may explain the relatively low current star formation rates in the system as a whole.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy