SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gullikson Eric M.) "

Sökning: WFRF:(Gullikson Eric M.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aquila, Andrew L., et al. (författare)
  • Measurements of the optical constants of scandium in the 50-1300 eV range
  • 2004
  • Ingår i: SPIE 5538, Optical Constants of Materials for UV to X-Ray Wavelengths. - : SPIE - International Society for Optical Engineering. ; , s. 64-71
  • Konferensbidrag (refereegranskat)abstract
    • Scandium containing multilayers have been produced with very high reflectivity in the soft x-ray spectrum.  Accurate optical constants are required in order to model the multilayer reflectivity.  Since there are relatively few measurements of the optical constants of Scandium in the soft x-ray region we have performed measurements over the energy range of 50-1,300 eV.  Thin films of Scandium were deposited by ion-assisted magnetron sputtering at Linkoping University and DC Magnetron sputtering at CXRO.  Transmission measurements were performed at the Advanced Light Source beamline 6.3.2.  The absorption coefficient was deduced from the measurements and the dispersive part of the index of refraction was obtained using the Kramers-Kronig relation.  The measured optical constants are used to model the near-normal incidence reflectivity of Cr/Sc multilayers near the Sc L2,3 edge.
  •  
2.
  • Eriksson, Fredrik, 1975-, et al. (författare)
  • Interface engineering of short-period Ni/V multilayer X-ray mirrors
  • 2006
  • Ingår i: Thin Solid Films. - : Elsevier BV. - 0040-6090 .- 1879-2731. ; 500:1-2, s. 84-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-energy ion-assisted magnetron sputter deposition has been used for the synthesis of highly reflective Ni/V multilayer soft X-ray mirrors. A low ion energy and a high ion-to-metal flux ratio were employed in order to stimulate the adatom mobility while minimizing ion-induced intermixing at the interfaces. An analytic model, based on the binary collision approximation, was used in order to gain insight into low-energy ion-surface interactions as a function of ion energy and ion-to-metal flux ratio. The model predicted a favorable region in the ion energy-flux parameter space where only surface atomic displacements are stimulated during growth of Ni and V for multilayers. For a series of Ni/V multilayer mirrors with multilayer periods about Λ = 1.2 nm, grown with a continuous ion assistance using energies in the range 7-36 eV and with ion-to-metal flux ratios ΦNi = 4.7 and ΦV=20.9, specular and diffuse X-ray scattering analyses revealed that ion energies of ∼27-31 eV produced the best trade-off between reduced interfacial roughness and intermixing. However, it was also concluded that an interface mixing of about ± 1 atomic distance is unavoidable when a continuous flux of assisting ions is used. To overcome this limitation, a sophisticated interface engineering technique was employed, where the first 0.3 nm of each layer was grown with a high-flux low-energy ion assistance and the remaining part was grown with a slightly higher ion energy. This method was demonstrated to largely eliminate the intermixing while maintaining the smoothening effect of ion assistance. Two Ni/V multilayer soft X-ray mirror structures, one with 500 periods designed for near-normal incidence and one 150 periods reflecting polarizer at the Brewster angle, were grown utilizing the interface engineering concept. Both the near-normal incidence reflectivity as well as polarizability were improved by a factor of 2 as compared to previously reported data for an X-ray energy of E = 511 eV. © 2005 Elsevier B.V. All rights reserved.
  •  
3.
  • Ghafoor, Naureen, et al. (författare)
  • Effects of O and N impurities on the nanostructural evolution during growth of Cr/Sc multilayers
  • 2009
  • Ingår i: Journal of Materials Research. - 0884-2914 .- 2044-5326. ; 24:1, s. 79-95
  • Tidskriftsartikel (refereegranskat)abstract
    • Transition metal multilayers are prime candidates for high reflectivity soft x-ray multilayer mirrors. In particular, Cr/Sc multilayers in the amorphous state have proven to give the highest reflectivity in the water window. We have investigated the influence of impurities N and O as residual gas elements on the growth, structure, and optical performance of Cr/Sc multilayers deposited in high vacuum conditions by a dual cathode direct current magnetron sputter deposition. Multilayer structures with the modulation periods in the range of 0.9–4.5 nm and Cr layer to bilayer thickness ratios in the range of 0.17–0.83 were deposited with an intentionally raised base pressure (pB), ranging from 2 × 10-7 to 2 × 10-5 Torr. Compositional depth profiles were obtained by elastic recoil detection analysis and Rutherford backscattering spectroscopy, while the structural investigations of the multilayers were carried out using hard x-ray reflectivity and transmission electron microscopy. By investigating stacked multilayers, i.e., several multilayers with different designs of the modulation periods, stacked on top of each other in the samples, we have been able to conclude that both N and O are incorporated preferentially in the interior of the Sc layers. At pB = 2 × 10-6 Torr, typically <3 at.% of N and <1.5 at.% of O was found, which did not influence the amorphous nanostructure of the layers. Multilayers deposited with a high pB ~2 × 10-5 Torr, a N content as high as ~37 at.% was measured by elastic recoil detection analysis. These multilayers mainly consist of understoichiometric face-centered cubic CrN x /ScN y nanocrystalline layers, which could be grown as thin at 0.3 nm and is explained by a stabilizing effect on the ScN y layers during growth. It is also shown that by adding a background pressure of as little as 5 × 10-6 Torr of pure N2 the soft x-ray reflectivity (? = 3.11 nm) can be enhanced by more than 100% by N incorporation into the multilayer structures, whereas pure O2 at the same background pressure had no effect.
  •  
4.
  • Ghafoor, Naureen, et al. (författare)
  • Incorporation of nitrogen in Cr/Sc multilayers giving improved soft x-ray reectivity
  • 2008
  • Ingår i: Applied Physics Letters. - : AIP Publishing. - 0003-6951 .- 1077-3118. ; 92:9, s. 091913-
  • Tidskriftsartikel (refereegranskat)abstract
    • Soft x-ray reflectivity (SXR) of Cr/Sc multilayer with bilayer thickness of =1.56  nm was increased by 100% by an intentional introduction of nitrogen during magnetron sputtering. Multilayers deposited at background pressures of 2×10−6 Torr exhibited amorphous layers with flat interfaces. At 2×10−5 Torr, understoichiometric CrNx/ScNy multilayer with a nitrogen content of ~34  at.  % was formed. CrNx/ScNy multilayer comprising of only 100 periods exhibited a SXR of 11.5%. X-ray and electron microscopy analyses showed that the improvement in performance is a result of reduced interfacial diffusion yielding interface widths of 0.29  nm. The CrNx/ScNy multilayer exhibited thermal stability up to >380  °C.
  •  
5.
  • Karslloǧlu, Osman, et al. (författare)
  • Prospects for the expansion of standing wave ambient pressure photoemission spectroscopy to reactions at elevated temperatures
  • 2022
  • Ingår i: Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films. - : American Vacuum Society. - 0734-2101 .- 1520-8559. ; 40:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Standing wave ambient pressure photoemission spectroscopy (SWAPPS) is a promising method to investigate chemical and potential gradients across solid-vapor and solid-liquid interfaces under close-to-realistic environmental conditions, far away from high vacuum. Until now, these investigations have been performed only near room temperature, but for a wide range of interfacial processes, chief among them being heterogeneous catalysis, measurements at elevated temperatures are required. One concern in these investigations is the temperature stability of the multilayer mirrors, which generate the standing wave field. At elevated temperatures, degradation of the multilayer mirror due to, for example, interdiffusion between the adjacent layers, decreases the modulation of the standing wave field, thus rendering SWAPPS experiments much harder to perform. Here, we show that multilayer mirrors consisting of alternate B4C and W layers are stable at temperatures exceeding 600 °C and are, thus, promising candidates for future studies of surface and subsurface species in heterogeneous catalytic reactions using SWAPPS.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy