SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gulliver John) "

Sökning: WFRF:(Gulliver John)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • de Hoogh, Kees, et al. (författare)
  • Comparing land use regression and dispersion modelling to assess residential exposure to ambient air pollution for epidemiological studies
  • 2014
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 73, s. 382-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Land-use regression (LUR) and dispersion models (DM) are commonly used for estimating individual air pollution exposure in population studies. Few comparisons have however been made of the performance of these methods. Objectives: Within the European Study of Cohorts for Air Pollution Effects (ESCAPE) we explored the differences between LUR and DM estimates for NO2, PM10 and PM2.5. Methods: The ESCAPE study developed LUR models for outdoor air pollution levels based on a harmonised monitoring campaign. In thirteen ESCAPE study areas we further applied dispersion models. We compared LUR and DM estimates at the residential addresses of participants in 13 cohorts for NO2; 7 for PM10 and 4 for PM2.5. Additionally, we compared the DM estimates with measured concentrations at the 20-40 ESCAPE monitoring sites in each area. Results: The median Pearson R (range) correlation coefficients between LUR and DM estimates for the annual average concentrations of NO2, PM10 and PM2.5 were 0.75 (0.19-0.89), 0.39 (0.23-0.66) and 0.29 (0.22-0.81) for 112,971 (13 study areas), 69,591 (7) and 28,519(4) addresses respectively. The median Pearson R correlation coefficients (range) between DM estimates and ESCAPE measurements were of 0.74(0.09-0.86) for NO2; 0.58 (0.36-0.88) for PM10 and 0.58 (0.39-0.66) for PM2.5. Conclusions: LUR and dispersion model estimates correlated on average well for NO2 but only moderately for PM10 and PM2.5, with large variability across areas. DM predicted a moderate to large proportion of the measured variation for NO2 but less for PM10 and PM2.5.
  •  
2.
  • Arthur Hvidtfeldt, Ulla, et al. (författare)
  • Long-term exposure to fine particle elemental components and lung cancer incidence in the ELAPSE pooled cohort
  • 2021
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 193
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: An association between long-term exposure to fine particulate matter (PM2.5) and lung cancer has been established in previous studies. PM2.5 is a complex mixture of chemical components from various sources and little is known about whether certain components contribute specifically to the associated lung cancer risk. The present study builds on recent findings from the Effects of Low-level Air Pollution: A Study in Europe (ELAPSE) collaboration and addresses the potential association between specific elemental components of PM2.5 and lung cancer incidence.Methods: We pooled seven cohorts from across Europe and assigned exposure estimates for eight components of PM2.5 representing non-tail pipe emissions (copper (Cu), iron (Fe), and zinc (Zn)), long-range transport (sulfur (S)), oil burning/industry emissions (nickel (Ni), vanadium (V)), crustal material (silicon (Si)), and biomass burning (potassium (K)) to cohort participants' baseline residential address based on 100 m by 100 m grids from newly developed hybrid models combining air pollution monitoring, land use data, satellite observations, and dispersion model estimates. We applied stratified Cox proportional hazards models, adjusting for potential confounders (age, sex, calendar year, marital status, smoking, body mass index, employment status, and neighborhood-level socio-economic status).Results: The pooled study population comprised 306,550 individuals with 3916 incident lung cancer events during 5,541,672 person-years of follow-up. We observed a positive association between exposure to all eight components and lung cancer incidence, with adjusted HRs of 1.10 (95% CI 1.05, 1.16) per 50 ng/m(3) PM2.5 K, 1.09 (95% CI 1.02, 1.15) per 1 ng/m3 PM2.5 Ni, 1.22 (95% CI 1.11, 1.35) per 200 ng/m(3) PM2.5 S, and 1.07 (95% CI 1.02, 1.12) per 200 ng/m(3) PM2.5 V. Effect estimates were largely unaffected by adjustment for nitrogen dioxide (NO2). After adjustment for PM2.5 mass, effect estimates of K, Ni, S, and V were slightly attenuated, whereas effect estimates of Cu, Si, Fe, and Zn became null or negative.Conclusions: Our results point towards an increased risk of lung cancer in connection with sources of combustion particles from oil and biomass burning and secondary inorganic aerosols rather than non-exhaust traffic emissions. Specific limit values or guidelines targeting these specific PM2.5 components may prove helpful in future lung cancer prevention strategies.
  •  
3.
  • Chen, Jie, et al. (författare)
  • Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort : the ELAPSE project
  • 2022
  • Ingår i: British Journal of Cancer. - : Springer Science and Business Media LLC. - 0007-0920 .- 1532-1827. ; 126:10, s. 1499-1507
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The evidence linking ambient air pollution to bladder cancer is limited and mixed.Methods: We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders.Results: During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93–1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99–1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00–1.16 per 10 ng/m3).Conclusions: We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.
  •  
4.
  • Chen, Jie, et al. (författare)
  • Long-Term Exposure to Source-Specific Fine Particles and Mortality-A Pooled Analysis of 14 European Cohorts within the ELAPSE Project
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:13, s. 9277-9290
  • Tidskriftsartikel (refereegranskat)abstract
    • We assessed mortality risks associated with sourcespecific fine particles (PM2.5) in a pooled European cohort of 323,782 participants. Cox proportional hazard models were applied to estimate mortality hazard ratios (HRs) for source-specific PM2.5 identified through a source apportionment analysis. Exposure to 2010 annual average concentrations of source-specific PM2.5 components was assessed at baseline residential addresses. The source apportionment resulted in the identification of five sources: traffic, residual oil combustion, soil, biomass and agriculture, and industry. In single-source analysis, all identified sources were significantly positively associated with increased natural mortality risks. In multisource analysis, associations with all sources attenuated but remained statistically significant with traffic, oil, and biomass and agriculture. The highest association per interquartile increase was observed for the traffic component (HR: 1.06; 95% CI: 1.04 and 1.08 per 2.86 mu g/m(3) increase) across five identified sources. On a 1 mu g/m(3) basis, the residual oil-related PM2.5 had the strongest association (HR: 1.13; 95% CI: 1.05 and 1.22), which was substantially higher than that for generic PM2.5 mass, suggesting that past estimates using the generic PM2.5 exposure response function have underestimated the potential clean air health benefits of reducing fossil-fuel combustion. Source-specific associations with cause-specific mortality were in general consistent with findings of natural mortality.
  •  
5.
  • Cole-Hunter, Thomas, et al. (författare)
  • Long-term air pollution exposure and Parkinson's disease mortality in a large pooled European cohort : An ELAPSE study
  • 2023
  • Ingår i: Environment International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 171
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The link between exposure to ambient air pollution and mortality from cardiorespiratory diseases is well established, while evidence on neurodegenerative disorders including Parkinson’s Disease (PD) remains limited.Objective: We examined the association between long-term exposure to ambient air pollution and PD mortality in seven European cohorts.Methods: Within the project ‘Effects of Low-Level Air Pollution: A Study in Europe’ (ELAPSE), we pooled data from seven cohorts among six European countries. Annual mean residential concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC), and ozone (O3), as well as 8 PM2.5 components (copper, iron, potassium, nickel, sulphur, silicon, vanadium, zinc), for 2010 were estimated using Europe-wide hybrid land use regression models. PD mortality was defined as underlying cause of death being either PD, secondary Parkinsonism, or dementia in PD. We applied Cox proportional hazard models to investigate the associations between air pollution and PD mortality, adjusting for potential confounders.Results: Of 271,720 cohort participants, 381 died from PD during 19.7 years of follow-up. In single-pollutant analyses, we observed positive associations between PD mortality and PM2.5 (hazard ratio per 5 µg/m3: 1.25; 95% confidence interval: 1.01–1.55), NO2 (1.13; 0.95–1.34 per 10 µg/m3), and BC (1.12; 0.94–1.34 per 0.5 × 10-5m-1), and a negative association with O3 (0.74; 0.58–0.94 per 10 µg/m3). Associations of PM2.5, NO2, and BC with PD mortality were linear without apparent lower thresholds. In two-pollutant models, associations with PM2.5 remained robust when adjusted for NO2 (1.24; 0.95–1.62) or BC (1.28; 0.96–1.71), whereas associations with NO2 or BC attenuated to null. O3 associations remained negative, but no longer statistically significant in models with PM2.5. We detected suggestive positive associations with the potassium component of PM2.5.Conclusion: Long-term exposure to PM2.5, at levels well below current EU air pollution limit values, may contribute to PD mortality.
  •  
6.
  • de Hoogh, Kees, et al. (författare)
  • Development of West-European PM2.5 and NO2 land use regression models incorporating satellite-derived and chemical transport modelling data
  • 2016
  • Ingår i: Environmental Research. - : Elsevier BV. - 0013-9351 .- 1096-0953. ; 151, s. 1-10
  • Tidskriftsartikel (refereegranskat)abstract
    • Satellite-derived (SAT) and chemical transport model (CTM) estimates of PM2.5 and NO2 are increasingly used in combination with Land Use Regression (LUR) models. We aimed to compare the contribution of SAT and CTM data to the performance of LUR PM2.5 and NO2 models for Europe. Four sets of models, all including local traffic and land use variables, were compared (LUR without SAT or CTM, with SAT only, with CTM only, and with both SAT and CTM). LUR models were developed using two monitoring data sets: PM2.5 and NO2 ground level measurements from the European Study of Cohorts for Air Pollution Effects (ESCAPE) and from the European AIRBASE network. LUR PM2.5 models including SAT and SAT+CTM explained ~60% of spatial variation in measured PM2.5 concentrations, substantially more than the LUR model without SAT and CTM (adjR(2): 0.33-0.38). For NO2 CTM improved prediction modestly (adjR(2): 0.58) compared to models without SAT and CTM (adjR(2): 0.47-0.51). Both monitoring networks are capable of producing models explaining the spatial variance over a large study area. SAT and CTM estimates of PM2.5 and NO2 significantly improved the performance of high spatial resolution LUR models at the European scale for use in large epidemiological studies.
  •  
7.
  • Gedeborg, Rolf, et al. (författare)
  • Internationally comparable diagnosis-specific survival probabilities for calculation of the ICD-10-based Injury Severity Score
  • 2014
  • Ingår i: Journal of Trauma and Acute Care Surgery. - 2163-0755. ; 76:2, s. 358-365
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: The International Statistical Classification of Diseases, 10th Revision (ICD-10) -based Injury Severity Score (ICISS) performs well but requires diagnosis-specific survival probabilities (DSPs), which are empirically derived, for its calculation. The objective was to examine if DSPs based on data pooled from several countries could increase accuracy, precision, utility, and international comparability of DSPs and ICISS. METHODS: Australia, Argentina, Austria, Canada, Denmark, New Zealand, and Sweden provided ICD-10-coded injury hospital discharge data, including in-hospital mortality status. Data from the seven countries were pooled using four different methods to create an international collaborative effort ICISS (ICE-ICISS). The ability of the ICISS to predict mortality using the country-specific DSPs and the pooled DSPs was estimated and compared. RESULTS: The pooled DSPs were based on a total of 3,966,550 observations of injury diagnoses from the seven countries. The proportion of injury diagnoses having at least 100 discharges to calculate the DSP varied from 12% to 48% in the country-specific data set and was 66% in the pooled data set. When compared with using a country's own DSPs for ICISS calculation, the pooled DSPs resulted in somewhat reduced discrimination in predicting mortality (difference in c statistic varied from 0.006 to 0.04). Calibration was generally good when the predicted mortality risk was less than 20%. When Danish and Swedish data were used, ICISS was combined with age and sex in a logistic regression model to predict in-hospital mortality. Including age and sex improved both discrimination and calibration substantially, and the differences from using country-specific or pooled DSPs were minor. CONCLUSION: Pooling data from seven countries generated empirically derived DSPs. These pooled DSPs facilitate international comparisons and enables the use of ICISS in all settings where ICD-10 hospital discharge diagnoses are available. The modest reduction in performance of the ICE-ICISS compared with the country-specific scores is unlikely to outweigh the benefit of internationally comparable Injury Severity Scores possible with pooled data.
  •  
8.
  • Gilbert, Ruth, et al. (författare)
  • Child maltreatment : variation in trends and policies in six developed countries
  • 2012
  • Ingår i: The Lancet. - : Elsevier. - 0140-6736 .- 1474-547X. ; 379:9817, s. 758-772
  • Forskningsöversikt (refereegranskat)abstract
    • We explored trends in six developed countries in three types of indicators of child maltreatment for children younger than 11 years, since the inception of modern child protection systems in the 1970s. Despite several policy initiatives for child protection, we recorded no consistent evidence for a decrease in all types of indicators of child maltreatment. We noted falling rates of violent death in a few age and country groups, but these decreases coincided with reductions in admissions to hospital for maltreatment-related injury only in Sweden and Manitoba (Canada). One or more child protection agency indicators increased in five of six countries, particularly in infants, possibly as a result of early intervention policies. Comparisons of mean rates between countries showed five-fold to ten-fold differences in rates of agency indicators, but less than two-fold variation in violent deaths or maltreatment-related injury, apart from high rates of violent child death in the USA. These analyses draw attention to the need for robust research to establish whether the high and rising rates of agency contacts and out-of-home care in some settings are effectively reducing child maltreatment.
  •  
9.
  •  
10.
  • Hvidtfeldt, Ulla Arthur, et al. (författare)
  • Long term exposure to air pollution and kidney parenchyma cancer – Effects of low-level air pollution : a Study in Europe (ELAPSE)
  • 2022
  • Ingår i: Environmental Research. - : Academic Press Inc.. - 0013-9351 .- 1096-0953. ; 215
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Particulate matter (PM) is classified as a group 1 human carcinogen. Previous experimental studies suggest that particles in diesel exhaust induce oxidative stress, inflammation and DNA damage in kidney cells, but the evidence from population studies linking air pollution to kidney cancer is limited.METHODS: We pooled six European cohorts (N = 302,493) to assess the association of residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight elemental components of PM2.5 (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) with cancer of the kidney parenchyma. The main exposure model was developed for year 2010. We defined kidney parenchyma cancer according to the International Classification of Diseases 9th and 10th Revision codes 189.0 and C64. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level.RESULTS: The participants were followed from baseline (1985–2005) to 2011–2015. A total of 847 cases occurred during 5,497,514 person-years of follow-up (average 18.2 years). Median (5–95%) exposure levels of NO2, PM2.5, BC and O3 were 24.1 μg/m3 (12.8–39.2), 15.3 μg/m3 (8.6–19.2), 1.6 10−5 m−1 (0.7–2.1), and 87.0 μg/m3 (70.3–97.4), respectively. The results of the fully adjusted linear analyses showed a hazard ratio (HR) of 1.03 (95% confidence interval [CI]: 0.92, 1.15) per 10 μg/m³ NO2, 1.04 (95% CI: 0.88, 1.21) per 5 μg/m³ PM2.5, 0.99 (95% CI: 0.89, 1.11) per 0.5 10−5 m−1 BCE, and 0.88 (95% CI: 0.76, 1.02) per 10 μg/m³ O3. We did not find associations between any of the elemental components of PM2.5 and cancer of the kidney parenchyma.CONCLUSION: We did not observe an association between long-term ambient air pollution exposure and incidence of kidney parenchyma cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (17)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (18)
Författare/redaktör
Gulliver, John (14)
de Hoogh, Kees (12)
Hoek, Gerard (12)
Katsouyanni, Klea (12)
Hoffmann, Barbara (12)
Brunekreef, Bert (11)
visa fler...
Bellander, Tom (11)
Weinmayr, Gudrun (11)
Forastiere, Francesc ... (11)
Nagel, Gabriele (10)
Chen, Jie (10)
Rizzuto, Debora (10)
Peters, Annette (10)
Leander, Karin (10)
Stafoggia, Massimo (10)
Fecht, Daniela (10)
Ketzel, Matthias (10)
Samoli, Evangelia (10)
Wolf, Kathrin (10)
Magnusson, Patrik K ... (9)
Raaschou-Nielsen, Ol ... (9)
Hertel, Ole (9)
Liu, Shuo (9)
Pershagen, Göran (8)
Cesaroni, Giulia (8)
Brandt, Jørgen (8)
Strak, Maciej (8)
Vienneau, Danielle (8)
Andersen, Zorana J. (7)
Rodopoulou, Sophia (7)
Sigsgaard, Torben (6)
Severi, Gianluca (6)
Klompmaker, Jochem O ... (6)
Boutron-Ruault, Mari ... (5)
Oftedal, Bente (5)
Bauwelinck, Mariska (5)
Jöckel, Karl-Heinz (5)
Tjønneland, Anne (4)
Jørgensen, Jeanette ... (4)
Concin, Hans (4)
Renzi, Matteo (4)
Lager, Anton (3)
van Gils, Carla H. (3)
Atkinson, Richard (3)
Lang, Alois (3)
Jovanovic Andersen, ... (3)
Janssen, Nicole (3)
Ljungman, Petter L. ... (3)
van der Schouw, Yvon ... (3)
Pershagen, Goran (3)
visa färre...
Lärosäte
Karolinska Institutet (14)
Stockholms universitet (11)
Göteborgs universitet (2)
Umeå universitet (2)
Örebro universitet (2)
Kungliga Tekniska Högskolan (1)
visa fler...
Uppsala universitet (1)
Linköpings universitet (1)
Karlstads universitet (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (16)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy