SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gumienna Kontecka Elzbieta) "

Sökning: WFRF:(Gumienna Kontecka Elzbieta)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Das, Biswanath, et al. (författare)
  • A dinuclear zinc(II) complex of a new unsymmetric ligand with an N(5)0(2) donor set; A structural and functional model for the active site of zinc phosphoesterases
  • 2014
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 0162-0134 .- 1873-3344. ; 132, s. 6-17
  • Tidskriftsartikel (refereegranskat)abstract
    • The dinuclear complex [Zn-2(DPCPMP)(pivalate)](C10(4)), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin2-y1)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate(BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; they reveals that the dinuclear zinc(II) complexes, [Zn-2(DPCPMP)](2) and [Zn-2(DPCPMP)(OH)1 predominate the solution above pH 4. The relatively high pKa of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand = 0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters triangle H double dagger = 95.6 kJ mol(-1), triangle S double dagger = 44.8 J mo1(-1) K-1, and 6,triangle G double dagger = 108.0 kJ mo1-1. The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn-2(DPCPMP)(mu-OH)] (+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFF). Calculations show that the reaction goes through one concerted step (S(N)2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; the leaving group dissociates simultaneously in an overall inner sphere type activation. The calculated free energy barrier is in good agreement with the experimentally determined activation parameters.
  •  
2.
  • Das, Biswanath, et al. (författare)
  • A dinuclear zinc(II) complex of a new unsymmetric ligand with an N5O2 donor set; A structural and functional model for the active site of zinc phosphoesterases.
  • 2014
  • Ingår i: Journal of Inorganic Biochemistry. - : Elsevier BV. - 1873-3344 .- 0162-0134. ; 132:Online 13 August 2013, s. 6-17
  • Tidskriftsartikel (refereegranskat)abstract
    • The dinuclear complex [Zn2(DPCPMP)(pivalate)](ClO4), where DPCPMP is the new unsymmetrical ligand [2-(N-(3-((bis((pyridin-2-yl)methyl)amino)methyl)-2-hydroxy-5-methylbenzyl)-N-((pyridin-2-yl)methyl)amino)acetic acid], has been synthesized and characterized. The complex is a functional model for zinc phosphoesterases with dinuclear active sites. The hydrolytic efficacy of the complex has been investigated using bis-(2,4-dinitrophenyl)phosphate (BDNPP), a DNA analog, as substrate. Speciation studies using potentiometric titrations have been performed for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; they reveals that the dinuclear zinc(II) complexes, [Zn2(DPCPMP)](2+) and [Zn2(DPCPMP)(OH)](+) predominate the solution above pH4. The relatively high pKa of 8.38 for water deprotonation suggests that a terminal hydroxide complex is formed. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-11.0 and with varying metal to ligand ratio (metal salt:ligand=0.5:1 to 3:1) have been performed. Variable temperature studies gave the activation parameters ΔH(‡)=95.6kJmol(-1), ΔS(‡)=-44.8Jmol(-1)K(-1), and ΔG(‡)=108.0kJmol(-1). The cumulative results indicate the hydroxido-bridged dinuclear Zn(II) complex [Zn2(DPCPMP)(μ-OH)](+) as the effective catalyst. The mechanism of hydrolysis has been probed by computational modeling using density functional theory (DFT). Calculations show that the reaction goes through one concerted step (SN2 type) in which the bridging hydroxide in the transition state becomes terminal and performs a nucleophilic attack on the BDNPP phosphorus; the leaving group dissociates simultaneously in an overall inner sphere type activation. The calculated free energy barrier is in good agreement with the experimentally determined activation parameters.
  •  
3.
  • Das, Biswanath, et al. (författare)
  • An Unsymmetric Ligand with a N5O2 Donor Set and Its Corresponding Dizinc Complex : A Structural and Functional Phosphoesterase Model
  • 2018
  • Ingår i: European Journal of Inorganic Chemistry. - : Wiley. - 1434-1948 .- 1099-1948 .- 1099-0682. ; :36, s. 4004-4013
  • Tidskriftsartikel (refereegranskat)abstract
    • To mimic the active sites of the hydrolytic enzyme zinc phosphotriesterase, a new dinucleating unsymmetric ligand, PICIMP (2-{[2-hydroxy-5-methyl-3-({[(1-methyl-1H-imidazol-2-yl)methyl](pyridin-2-ylmethyl)amino}methyl)benzyl][(1-methyl-1H-imidazol-2-yl)methyl]amino}acetic acid), has been synthesized and characterized. The hydrolytic efficacy of the complex solution (PICIMP/ZnCl2 = 1:2) has been investigated using bis-(2,4-dinitrophenyl)phosphate (BDNPP), a DNA analogue substrate. Speciation studies were undertaken by potentiometric titrations at varying pH for both the ligand and the corresponding dizinc complex to elucidate the formation of the active hydrolysis catalyst; these studies reveal that the dinuclear zinc(II) complexes, [Zn-2(PICIMP)](2+) and [Zn-2(PICIMP)(OH)](+) predominate in solution above pH 4. The obtained pK(a) of 7.44 for the deprotonation of water suggests formation of a bridging hydroxide between the two Zn-II ions. Kinetic investigations of BDNPP hydrolysis over the pH range 5.5-10.5 have been performed. The cumulative results indicate the hydroxo-bridged dinuclear Zn-II complex [Zn-2(PICIMP)(mu-OH)](+) as the effective catalyst. Density functional theory calculations were performed to investigate the detailed reaction mechanism. The calculations suggest that the bridging hydroxide becomes terminally coordinated to one of the zinc ions before performing the nucleophilic attack in the reaction.
  •  
4.
  • Malinkin, Sergey O., et al. (författare)
  • Novel pyrazolate-based copper(II) [2 x 2] grid complexes: Synthesis, structure and properties
  • 2012
  • Ingår i: Inorganica Chimica Acta. - : Elsevier BV. - 0020-1693. ; 392, s. 322-330
  • Tidskriftsartikel (refereegranskat)abstract
    • 5-Acetyl-substituted pyrazole-3-carboxylic acid (H2L) forms [2 x 2] grid-like tetranuclear Cu(II) complexes with four five-coordinated copper(II) ions bridged by pyrazolate groups. Despite a significant dissociation of [Cu4L4(H2O)(4)]center dot 4H(2)O (1) in aqueous solution(1), it was possible to substitute the coordinated water molecules by pyridine ligands or azide anions. The resulting tetranuclear complexes [Cu4L4Py4]center dot 2H(2)O (2) and Na-4[Cu4L4(N-3)(4)]center dot 7MeOH (3) were isolated and studied by X-ray diffraction analysis. In 2 and 3 the azide anions or pyridine molecules complete the distorted square-pyramidal coordination of each copper(II) center. Magnetic susceptibilities of the obtained compounds have been measured by SQUID techniques. Simulation of the data using a Heisenberg spin Hamiltonian approach showed that the bridges between the metals mediate weak intramolecular antiferromagnetic coupling (J in the range -13.3 to -17.1 cm (1)) and lead to a singlet ground state in all cases. (C) 2012 Elsevier B.V. All rights reserved.
  •  
5.
  • Malinkin, Sergey O., et al. (författare)
  • Zinc(II) Complexes with Asymmetric 3,5-Substituted 1H-Pyrazoles
  • 2012
  • Ingår i: European Journal of Inorganic Chemistry. - : Wiley. - 1099-0682 .- 1434-1948. ; :10, s. 1639-1649
  • Tidskriftsartikel (refereegranskat)abstract
    • Two new pyrazolate-based ligands, N'-[1-(3-acetyl-4-methyl-1H-pyrazol-5-yl)ethylidene]-2-(hydroxyimino)propanehydrazide (L1) and 5-[(E)-1-(2-{(E)-2-(hydroxyimino}propanoyl}hydrazono)ethyl]-4-methyl-1H-pyrazole-3-carboxylic acid (L2), were synthesized and studied for zinc(II) complexation. A set of pH-dependent UV/Vis measurements has been performed to determine the complex formation properties of L2. According to the calculations, in solution, L2 forms variously protonated mononuclear (ZnII/L2 = 1:1) and dinuclear (ZnII/L2 = 2:1) complexes. The reaction of the deprotonated ligands with hydrated ZnII salts and slow diffusion of ammonia into the reaction mixtures gave mononuclear [Zn(L1-2H)(NH3)2]center dot DMF (1) and trinuclear mu-pyrazolato-bridged [Zn3(L2-3H)2(NH3)5]center dot 4H2O (3). In both complexes, the zinc ions are in the same distorted trigonal-bipyramidal environment, coordinated to two nitrogen atoms of the ammonia and one oxygen and two nitrogen atoms of the pyrazolate and hydrazide groups. The molecular structures of all of the ligands and complexes have been elucidated by X-ray crystallography.
  •  
6.
  • Shylin, Sergii I., et al. (författare)
  • Expanding manganese(iv) aqueous chemistry : unusually stable water-soluble hexahydrazide clathrochelate complexes
  • 2021
  • Ingår i: Chemical Communications. - Cambridge : Royal Society of Chemistry. - 1359-7345 .- 1364-548X. ; 57:84, s. 11060-11063
  • Tidskriftsartikel (refereegranskat)abstract
    • Mn cage complexes are rare, and the ones successfully isolated in the solid state are not stable in water and organic solvents. Herein, we present the first report of mononuclear Mn clathrochelates, in which the encapsulated metal exists in the oxidation state +4. The complexes are extremely stable in the crystalline state and in solutions and show rich redox chemistry.
  •  
7.
  • Tomyn, Stefania, et al. (författare)
  • Indefinitely stable iron(IV) cage complexes formed in water by air oxidation
  • 2017
  • Ingår i: Nature Communications. - London : Springer Nature. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • In nature, iron, the fourth most abundant element of the Earth’s crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy