SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gupta Akhilesh) "

Sökning: WFRF:(Gupta Akhilesh)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kalra, Hina, et al. (författare)
  • Vesiclepedia : a compendium for extracellular vesicles with continuous community annotation
  • 2012
  • Ingår i: PLoS biology. - : Public library of science. - 1544-9173 .- 1545-7885. ; 10:12, s. e1001450-
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.
  •  
2.
  • Kumar, Rajesh, et al. (författare)
  • Development of a Glacio-hydrological Model for Discharge and Mass Balance Reconstruction
  • 2016
  • Ingår i: Water resources management. - : Springer Science and Business Media LLC. - 0920-4741 .- 1573-1650. ; 30:10, s. 3475-3492
  • Tidskriftsartikel (refereegranskat)abstract
    • The reconstruction of glacio-hydrological records for the data deficient Himalayan catchments is needed in order to study the past and future water availability. The study provides outcomes of a glacio-hydrological model based on the degree-day approach. The model simulates the discharge and mass balance for glacierised Shaune Garang catchment. The degree-day factors for different land covers, used in the model, were estimated using daily stake measurements on Shaune Garang glacier and they were found to be varying between 2.6 ± 0.4 and 9.3 ± 0.3 mm °C−1day−1. The model is validated using observed discharge during ablation season of 2014 with coefficient of determination (R2) 0.90 and root mean square error (RMSE) 1.05 m3 sec−1. The model is used to simulate discharge from 1985 to 2008 and mass balance from 2001 to 2008. The model results show significant contribution of seasonal snow and ice melt in total discharge of the catchment, especially during summer. We observe the maximum discharge in July having maximum contribution from snow and ice melt. The annual melt season discharge shows following a decreasing trend in the simulation period. The reconstructed mass balance shows mass loss of 0.89 m we per year between 2001 and 2008 with slight mass gain during 2000/01 and 2004/05 hydrological years.
  •  
3.
  • Kumar, Ramesh, et al. (författare)
  • Hydro-geochemical analysis of meltwater draining from Bilare Banga glacier, Western Himalaya
  • 2019
  • Ingår i: Acta Geophysica. - : Springer. - 1895-6572 .- 1895-7455. ; 67:2, s. 651-660
  • Tidskriftsartikel (refereegranskat)abstract
    • The changing climate is affecting the melting process of glacier ice and snow in Himalaya and may influence the hydro-geochemistry of the glacial meltwater. This paper represents the ionic composition of discharge from Bilare Banga glacier by carrying out hydro-geochemical analysis of water samples of melting season of 2017. The pH and EC were measured on-site in field, and others parameters were examined in the laboratory. The abundance of the ions observed in meltwater has been arranged in decreasing order for cations as Ca2+ > Mg2+ > Na+ > K+ and for anions as HCO3− > SO42− > Cl− > NO3−, respectively. Analysis suggests that the meltwater is mostly dominated by Ca2+ and HCO3−. It has been observed that the ionic concentration HCO3− is dominant and Cl− is the least in the catchment. Piper plot analysis suggests that the chemical composition of the glacier discharge not only has natural origin but also has some anthropogenic input. Hydro-geochemical heterogeneity reflected the carbonate-dominated features (Ca2+–HCO3−) in the catchment. The carbonate weathering was found as the regulatory factor to control the chemistry of the glacial meltwater due to the high enrichment ratio of (Ca2+ + Mg2+) against TZ+ and (Na+ + K+). In statistical approach, PCA analysis suggests that geogenic weathering dynamics in the catchment is associated with carbonate-dominant lithology.
  •  
4.
  • Singh, Shaktiman, et al. (författare)
  • Changing climate and glacio-hydrology in Indian Himalayan Region : a review
  • 2016
  • Ingår i: Wiley Interdisciplinary Reviews. - : Wiley. - 1757-7780 .- 1757-7799. ; 7:3, s. 393-410
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a comprehensive review of the published literature on the evidences of a changing climate in the Indian Himalayan Region (IHR) and its impacts on the glacio-hydrology of the region. The IHR serves as an important source of fresh water for the densely populated areas downstream. It is evident from the available studies that temperature is significantly increasing in all parts of the IHR, whereas precipitation is not indicative of any particular spatiotemporal trend. Glacio-hydrological proxies for changing climate, such as, terminus and areal changes of the glaciers, glacier mass balance, and streamflow in downstream areas, highlight changes more evidently in recent decades. On an average, studies have predicted an increase in temperature and precipitation in the region, along with increase in streamflow of major rivers. Such trends are already apparent in some sub-basins of the western IHR. The region is particularly vulnerable to changing climate as it is highly dependent on snow and glacier melt run-off to meet its freshwater demands. We present a systematic review of key papers dealing with changing temperature, precipitation, glaciers, and streamflow in the IHR. We discuss these interdisciplinary themes in relation to each other, in order to establish the present and future impacts of climatic, glaciological, and hydrological changes in the region.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy