SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Gustafsson Brywe Katarina 1965) "

Search: WFRF:(Gustafsson Brywe Katarina 1965)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Gustafsson Brywe, Katarina, 1965, et al. (author)
  • IGF-I neuroprotection in the immature brain after hypoxia-ischemia, involvement of Akt and GSK3beta?
  • 2005
  • In: Eur J Neurosci. - : Wiley. - 0953-816X. ; 21:6, s. 1489-502
  • Journal article (peer-reviewed)abstract
    • Insulin-like growth factor I (IGF-I) is a neurotrophic factor that promotes neuronal growth, differentiation and survival. Neuroprotective effects of IGF-I have previously been shown in adult and juvenile rat models of brain injury. We wanted to investigate the neuroprotective effect of IGF-I after hypoxia-ischemia (HI) in 7-day-old neonatal rats and the mechanisms of IGF-I actions in vivo. We also wanted to study effects of HI and/or IGF-I on the serine/threonine kinases Akt and glycogen synthase kinase 3beta (GSK3beta) in the phophatidylinositol-3 kinase (PI3K) pathway. Immediately after HI, phosphorylated Akt (pAkt) and phosphorylated GSK3beta (pGSK3beta) immunoreactivity was lost in the ipsilateral and reduced in the contralateral hemisphere. After 45 min, pAkt levels were restored to control values, whereas pGSK3beta remained low 4 h after HI. Administration of IGF-I (50 microg i.c.v.) after HI resulted in a 40% reduction in brain damage (loss of microtubule-associated protein) compared with vehicle-treated animals. IGF-I treatment without HI was shown to increase pAkt whereas pGSK3beta decreased in the cytosol, but increased in the nuclear fraction. IGF-I treatment after HI increased pAkt in the cytosol and pGSK3beta in both the cytosol and the nuclear fraction in the ipsilateral hemisphere compared with vehicle-treated rats, concomitant with a reduced caspase-3- and caspase-9-like activity. In conclusion, IGF-I induces activation of Akt during recovery after HI which, in combination with inactivation of GSK3beta, may explain the attenuated activation of caspases and reduction of injury in the immature brain.
  •  
2.
  • Gustafsson Brywe, Katarina, 1965, et al. (author)
  • Growth hormone-releasing peptide hexarelin reduces neonatal brain injury and alters Akt/glycogen synthase kinase-3beta phosphorylation
  • 2005
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 146:11, s. 4665-72
  • Journal article (peer-reviewed)abstract
    • Hexarelin (HEX) is a peptide GH secretagogue with a potent ability to stimulate GH secretion and recently reported cardioprotective actions. However, its effects in the brain are largely unknown, and the aim of the present study was to examine the potential protective effect of HEX on the central nervous system after injury, as well as on caspase-3, Akt, and extracellular signal-regulated protein kinase (ERK) signaling cascades in a rat model of neonatal hypoxia-ischemia. Hypoxic-ischemic insult was induced by unilateral carotid ligation and hypoxic exposure (7.7% oxygen), and HEX treatment was administered intracerebroventricularly, directly after the insult. Brain damage was quantified at four coronal levels and by regional neuropathological scoring. Brain damage was reduced by 39% in the treatment group, compared with vehicle group, and injury was significantly reduced in the cerebral cortex, hippocampus, and thalamus but not in the striatum. The cerebroprotective effect was accompanied by a significant reduction of caspase-3 activity and an increased phosphorylation of Akt and glycogen synthase kinase-3beta, whereas ERK was unaffected. In conclusion, we demonstrate for the first time that HEX is neuroprotective in the neonatal setting in vivo and that increased Akt signaling is associated with downstream attenuation of glycogen synthase kinase-3beta activity and caspase-dependent cell death.
  •  
3.
  • Hedtjärn, Maj, 1973, et al. (author)
  • Global gene expression in the immature brain after hypoxia-ischemia
  • 2004
  • In: J Cereb Blood Flow Metab. ; 24:12, s. 1317-32
  • Journal article (peer-reviewed)abstract
    • Ischemia induces a complex response of differentially expressed genes in the brain. In order to understand the specific mechanisms of injury in the developing brain, it is important to obtain information on global changes in the transcriptome after neonatal hypoxia-ischemia. In this study, oligonucleotide arrays were used to investigate genomic changes at 2, 8, 24, and 72 hours after neonatal hypoxia-ischemia, which was induced in 9-day-old mice by left carotid artery ligation followed by hypoxia (10% O2). In total, 343 genes were differentially expressed in cortex, hippocampus, thalamus, and striatum 2 to 72 hours after hypoxia-ischemia, when comparing ipsilateral with contralateral hemispheres and with controls, using the significance analysis for microarrays. A total of 283 genes were upregulated and 60 were downregulated, and 94% of the genes had not previously been shown after neonatal hypoxia-ischemia. Genes related to transcription factors and metabolism had mostly upregulated transcripts, whereas most downregulated genes belonged to the categories of ion and vesicular transport and signal transduction. Genes involved in transcription, stress, and apoptosis were induced early after the insult, and many new genes that may play important roles in the pathophysiology of neonatal hypoxia-ischemia were identified.
  •  
4.
  • Pirianov, Grisha, et al. (author)
  • Deletion of the c-Jun N-terminal kinase 3 gene protects neonatal mice against cerebral hypoxic-ischaemic injury
  • 2007
  • In: J Cereb Blood Flow Metab. ; 27:5, s. 1022-32
  • Journal article (peer-reviewed)abstract
    • c-Jun N-terminal kinase 3 (JNK3) is a member of the stress-activated group of mitogen-activated protein kinases. c-Jun N-terminal kinase 3 is a potent mediator of apoptosis and the use of JNK inhibitors or jnk3 gene deletion each protect against brain injury in adults. However, little is known about the role of JNK3 or its mechanism of action in neonatal brain injury. The aim of the present study was to compare the vulnerability of neonatal JNK3 knockout (JNK3 KO) mice and wild-type (WT) mice to cerebral hypoxic-ischaemic injury (HII) using unilateral-carotid occlusion combined with transient hypoxia. The degree of neural tissue loss in JNK3 KO mice was substantially reduced compared with WT mice (JNK3 KO 27.8%+/-2.8% versus WT 48.3%+/-2.0%, P
  •  
5.
  • Wood, Teresa L, et al. (author)
  • Delayed IGF-1 administration rescues oligodendrocyte progenitors from glutamate-induced cell death and hypoxic-ischemic brain damage.
  • 2007
  • In: Developmental neuroscience. - : S. Karger AG. - 1421-9859 .- 0378-5866. ; 29:4-5, s. 302-10
  • Journal article (peer-reviewed)abstract
    • We previously demonstrated that IGF-1 blocks glutamate-mediated death of late oligodendrocyte progenitors (OPs) by preventing Bax translocation, mitochondrial cytochrome c release and cleavage of caspases 9 and 3. Here, we demonstrate that IGF-1 prevents caspase 3 activation in late OPs when administered up to 16 h following exposure to glutamate. Moreover, late addition of IGF-1 to OPs previously exposed to toxic levels of glutamate promotes oligodendrocyte maturation as measured by myelin basic protein expression. We also demonstrate that intraventricularly administered IGF-1 retains OPs in the perinatal white matter after hypoxia-ischemia when given after insult. These results suggest that delayed administration of IGF-1 will rescue OPs in the immature white matter and promote myelination following hypoxia-ischemia.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view