SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gustavsson Leif 1958 ) "

Sökning: WFRF:(Gustavsson Leif 1958 )

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply
  • 2013
  • Ingår i: Applied Energy. - : Elsevier. - 0306-2619 .- 1872-9118. ; 112, s. 834-842
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study the primary energy use and carbon footprint over the life cycle of a wood-frame apartmentbuilding designed either conventionally or to the passive house standard are analyzed. Scenarioswhere the building is heated with electric resistance heaters, bedrock heat pump or cogeneration-baseddistrict heat, all with biomass-based energy supply, are compared. The analysis covers all life cyclephases of the buildings, including extraction of raw materials, processing of raw materials into buildingmaterials, fabrication and assembly of materials into a ready building, operation and use of the buildings,and the demolition of the buildings and the post-use management of the building materials. Theprimary energy analysis encompasses the entire energy chains from the extraction of natural resourcesto the delivered energy services. The carbon footprint accounting includes fossil fuel emissions, cementprocess reaction emissions, potential avoided fossil fuel emissions due to biomass residues substitutionand end-of-life benefit of post-use materials. The results show that the operation of the buildingaccounts for the largest share of life cycle primary energy use. The passive house design reduces theprimary energy use and CO2 emission for heating, and the significance of this reduction depends onthe type of heating and energy supply systems. The choice of end-use heating system strongly influencesthe life cycle impacts. A biomass-based system with cogeneration of district heat and electricitygives low primary energy use and low carbon footprint, even with a conventional design. The amountof biomass residues from the wood products chain is large and can be used to substitute fossil fuels.This significantly reduces the net carbon footprint for both the conventional and passive house designs.This study shows the importance of adopting a life cycle perspective involving production, construction,operation, end-of-life, and energy supply when evaluating the primary energy use and climaticimpacts of both passive and conventional buildings.
  •  
2.
  • Dodoo, Ambrose, 1979-, et al. (författare)
  • Lifecycle primary energy analysis of conventional and passive houses
  • 2012
  • Ingår i: International Journal of Sustainable Building Technology and Urban Development. - 2093-761X .- 2093-7628. ; 3:2, s. 105-111
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study we analyse the primary energy implications of thermal envelope designs and construction systems, for a 4-storey apartment building, including the full lifecycle phases and the entire energy chains. We maintain the architectural design of the reference building, and alter the thermal properties of the envelope components and include heat recovery of ventilation air to achieve buildings with thermal properties similar to three existing passive houses in Sweden. We also vary the building frame material from the reference wood case to reinforced concrete, and vary the heat supply system between district heating and electric resistance heating. We follow the lifecycle of the buildings and analyse and compare their lifecycle primary energy use, considering the production, operation and end-of-life energy uses. The results show that the lifecycle primary energy use of a passive house building is substantially lower when it is heated with district heating instead of electricity. A passive house with district heating uses 42–45% less lifecycle primary energy than the same house with electric heating. Lifecycle primary energy use is 2–4% less when a passive house is constructed with a wood frame instead of a concrete frame. This study shows that material choice becomes increasingly important as buildings are made to the passive house standard and as efficient heat supply systems are used.
  •  
3.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy