SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guthke Reinhard) "

Sökning: WFRF:(Guthke Reinhard)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Mika, 1977- (författare)
  • Gene networks from high-throughput data : Reverse engineering and analysis
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Experimental innovations starting in the 1990’s leading to the advent of high-throughput experiments in cellular biology have made it possible to measure thousands of genes simultaneously at a modest cost. This enables the discovery of new unexpected relationships between genes in addition to the possibility of falsify existing. To benefit as much as possible from these experiments the new inter disciplinary research field of systems biology have materialized. Systems biology goes beyond the conventional reductionist approach and aims at learning the whole system under the assumption that the system is greater than the sum of its parts. One emerging enterprise in systems biology is to use the high-throughput data to reverse engineer the web of gene regulatory interactions governing the cellular dynamics. This relatively new endeavor goes further than clustering genes with similar expression patterns and requires the separation of cause of gene expression from the effect. Despite the rapid data increase we then face the problem of having too few experiments to determine which regulations are active as the number of putative interactions has increased dramatic as the number of units in the system has increased. One possibility to overcome this problem is to impose more biologically motivated constraints. However, what is a biological fact or not is often not obvious and may be condition dependent. Moreover, investigations have suggested several statistical facts about gene regulatory networks, which motivate the development of new reverse engineering algorithms, relying on different model assumptions. As a result numerous new reverse engineering algorithms for gene regulatory networks has been proposed. As a consequent, there has grown an interest in the community to assess the performance of different attempts in fair trials on “real” biological problems. This resulted in the annually held DREAM conference which contains computational challenges that can be solved by the prosing researchers directly, and are evaluated by the chairs of the conference after the submission deadline.This thesis contains the evolution of regularization schemes to reverse engineer gene networks from high-throughput data within the framework of ordinary differential equations. Furthermore, to understand gene networks a substantial part of it also concerns statistical analysis of gene networks. First, we reverse engineer a genome-wide regulatory network based solely on microarray data utilizing an extremely simple strategy assuming sparseness (LASSO). To validate and analyze this network we also develop some statistical tools. Then we present a refinement of the initial strategy which is the algorithm for which we achieved best performer at the DREAM2 conference. This strategy is further refined into a reverse engineering scheme which also can include external high-throughput data, which we confirm to be of relevance as we achieved best performer in the DREAM3 conference as well. Finally, the tools we developed to analyze stability and flexibility in linearized ordinary differential equations representing gene regulatory networks is further discussed.
  •  
2.
  • Schleicher, Jana, et al. (författare)
  • Facing the challenges of multiscale modelling of bacterial and fungal pathogen-host interactions
  • 2017
  • Ingår i: Briefings in Functional Genomics & Proteomics. - : Oxford University Press. - 2041-2649 .- 2041-2657. ; 16:2, s. 57-69
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent and rapidly evolving progress on high-throughput measurement techniques and computational performance has led to the emergence of new disciplines, such as systems medicine and translational systems biology. At the core of these disciplines lies the desire to produce multiscale models: mathematical models that integrate multiple scales of biological organization, ranging from molecular, cellular and tissue models to organ, whole-organism and population scale models. Using such models, hypotheses can systematically be tested. In this review, we present state-of-the-art multiscale modelling of bacterial and fungal infections, considering both the pathogen and host as well as their interaction. Multiscale modelling of the interactions of bacteria, especially Mycobacterium tuberculosis, with the human host is quite advanced. In contrast, models for fungal infections are still in their infancy, in particular regarding infections with the most important human pathogenic fungi, Candida albicans and Aspergillus fumigatus. We reflect on the current availability of computational approaches for multiscale modelling of host-pathogen interactions and point out current challenges. Finally, we provide an outlook for future requirements of multiscale modelling.
  •  
3.
  • Vlaic, Sebastian, et al. (författare)
  • ModuleDiscoverer: Identification of regulatory modules in protein-protein interaction networks
  • 2018
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of disease-associated modules based on protein-protein interaction networks (PPINs) and gene expression data has provided new insights into the mechanistic nature of diverse diseases. However, their identification is hampered by the detection of protein communities within large-scale, whole-genome PPINs. A presented successful strategy detects a PPINs community structure based on the maximal clique enumeration problem (MCE), which is a non-deterministic polynomial time-hard problem. This renders the approach computationally challenging for large PPINs implying the need for new strategies. We present ModuleDiscoverer, a novel approach for the identification of regulatory modules from PPINs and gene expression data. Following the MCE-based approach, ModuleDiscoverer uses a randomization heuristic-based approximation of the community structure. Given a PPIN of Rattus norvegicus and public gene expression data, we identify the regulatory module underlying a rodent model of non-alcoholic steatohepatitis (NASH), a severe form of non-alcoholic fatty liver disease (NAFLD). The module is validated using single-nucleotide polymorphism (SNP) data from independent genome-wide association studies and gene enrichment tests. Based on gene enrichment tests, we find that ModuleDiscoverer performs comparably to three existing module-detecting algorithms. However, only our NASH-module is significantly enriched with genes linked to NAFLD-associated SNPs. ModuleDiscoverer is available at http://www.hki-jene.de/index.php/0/2/490 (Others/ModuleDiscoverer).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy