SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Håversen Liliana 1963) "

Sökning: WFRF:(Håversen Liliana 1963)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bandaru, Sashidar, et al. (författare)
  • Lack of RAC1 in macrophages protects against atherosclerosis.
  • 2020
  • Ingår i: PLoS One. - : Public Library of Science (PLoS). - 1932-6203. ; 15:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rho GTPase RAC1 is an important regulator of cytoskeletal dynamics, but the role of macrophage-specific RAC1 has not been explored during atherogenesis. We analyzed RAC1 expression in human carotid atherosclerotic plaques using immunofluorescence and found higher macrophage RAC1 expression in advanced plaques compared with intermediate human atherosclerotic plaques. We then produced mice with Rac1-deficient macrophages by breeding conditional floxed Rac1 mice (Rac1fl/fl) with mice expressing Cre from the macrophage-specific lysosome M promoter (LC). Atherosclerosis was studied in vivo by infecting Rac1fl/fl and Rac1fl/fl/LC mice with AdPCSK9 (adenoviral vector overexpressing proprotein convertase subtilisin/kexin type 9). Rac1fl/fl/LC macrophages secreted lower levels of IL-6 and TNF-α and exhibited reduced foam cell formation and lipid uptake. The deficiency of Rac1 in macrophages reduced the size of aortic atherosclerotic plaques in AdPCSK9-infected Rac1fl/fl/LC mice. Compare with controls, intima/media ratios, the size of necrotic cores, and numbers of CD68-positive macrophages in atherosclerotic plaques were reduced in Rac1-deficient mice. Moreover, we found that RAC1 interacts with actin-binding filamin A. Macrophages expressed increased RAC1 levels in advanced human atherosclerosis. Genetic inactivation of RAC1 impaired macrophage function and reduced atherosclerosis in mice, suggesting that drugs targeting RAC1 may be useful in the treatment of atherosclerosis.
  •  
2.
  • Battisti, Umberto Maria, et al. (författare)
  • Exploration of Novel Urolithin C Derivatives as Non-Competitive Inhibitors of Liver Pyruvate Kinase
  • 2023
  • Ingår i: Pharmaceuticals. - : MDPI AG. - 1424-8247. ; 16:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The inhibition of liver pyruvate kinase could be beneficial to halt or reverse non-alcoholic fatty liver disease (NAFLD), a progressive accumulation of fat in the liver that can lead eventually to cirrhosis. Recently, urolithin C has been reported as a new scaffold for the development of allosteric inhibitors of liver pyruvate kinase (PKL). In this work, a comprehensive structure-activity analysis of urolithin C was carried out. More than 50 analogues were synthesized and tested regarding the chemical features responsible for the desired activity. These data could pave the way to the development of more potent and selective PKL allosteric inhibitors.
  •  
3.
  • Battisti, U. M., et al. (författare)
  • Serendipitous Identification of a Covalent Activator of Liver Pyruvate Kinase
  • 2023
  • Ingår i: ChemBioChem. - : Wiley. - 1439-4227 .- 1439-7633. ; 24:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Enzymes are effective biological catalysts that accelerate almost all metabolic reactions in living organisms. Synthetic modulators of enzymes are useful tools for the study of enzymatic reactions and can provide starting points for the design of new drugs. Here, we report on the discovery of a class of biologically active compounds that covalently modifies lysine residues in human liver pyruvate kinase (PKL), leading to allosteric activation of the enzyme (EC50=0.29 μM). Surprisingly, the allosteric activation control point resides on the lysine residue K282 present in the catalytic site of PKL. These findings were confirmed by structural data, MS/MS experiments, and molecular modelling studies. Altogether, our study provides a molecular basis for the activation mechanism and establishes a framework for further development of human liver pyruvate kinase covalent activators. 
  •  
4.
  • Boström, Pontus, 1982, et al. (författare)
  • The SNARE protein SNAP23 and the SNARE-interacting protein Munc18c in human skeletal muscle are implicated in insulin resistance/type 2 diabetes.
  • 2010
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 59:8, s. 1870-8
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: Our previous studies suggest that the SNARE protein synaptosomal-associated protein of 23 kDa (SNAP23) is involved in the link between increased lipid levels and insulin resistance in cardiomyocytes. The objective was to determine whether SNAP23 may also be involved in the known association between lipid accumulation in skeletal muscle and insulin resistance/type 2 diabetes in humans, as well as to identify a potential regulator of SNAP23. RESEARCH DESIGN AND METHODS: We analyzed skeletal muscle biopsies from patients with type 2 diabetes and healthy, insulin-sensitive control subjects for expression (mRNA and protein) and intracellular localization (subcellular fractionation and immunohistochemistry) of SNAP23, and for expression of proteins known to interact with SNARE proteins. Insulin resistance was determined by a euglycemic hyperinsulinemic clamp. Potential mechanisms for regulation of SNAP23 were also investigated in the skeletal muscle cell line L6. RESULTS: We showed increased SNAP23 levels in skeletal muscle from patients with type 2 diabetes compared with that from lean control subjects. Moreover, SNAP23 was redistributed from the plasma membrane to the microsomal/cytosolic compartment in the patients with the type 2 diabetes. Expression of the SNARE-interacting protein Munc18c was higher in skeletal muscle from patients with type 2 diabetes. Studies in L6 cells showed that Munc18c promoted the expression of SNAP23. CONCLUSIONS: We have translated our previous in vitro results into humans by showing that there is a change in the distribution of SNAP23 to the interior of the cell in skeletal muscle from patients with type 2 diabetes. We also showed that Munc18c is a potential regulator of SNAP23.
  •  
5.
  • Chaudhari, Aditi, et al. (författare)
  • ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism
  • 2016
  • Ingår i: Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. - : Elsevier BV. - 1388-1981. ; 1861:11, s. 1643-1651
  • Tidskriftsartikel (refereegranskat)abstract
    • Lipid droplet formation, which is driven by triglyceride synthesis, requires several droplet-associated proteins. We identified ARAP2 (an ADP-ribosylation factor 6 GTPase-activating protein) in the lipid droplet proteome of NIH-3T3 cells and showed that knockdown of ARAP2 resulted in decreased lipid droplet formation and triglyceride synthesis. We also showed that ARAP2 knockdown did not affect fatty acid uptake but reduced basal glucose uptake, total levels of the glucose transporter GLUT1, and GLUT1 levels in the plasma membrane and the lipid micro-domain fraction (a specialized plasma membrane domain enriched in sphingolipids). Microarray analysis showed that ARAP2 knockdown altered expression of genes involved in sphingolipid metabolism. Because sphingolipids are known to play a key role in cell signaling, we performed lipidomics to further investigate the relationship between ARAP2 and sphingolipids and potentially identify a link with glucose uptake. We found that ARAP2 knockdown increased glucosylceramide and lactosylceramide levels without affecting ceramide levels, and thus speculated that the rate-limiting enzyme in glycosphingolipid synthesis, namely glucosylceramide synthase (GCS), could be modified by ARAP2. In agreement with our hypothesis, we showed that the activity of GCS was increased by ARAP2 knockdown and reduced by ARAP2 overexpression. Furthermore, pharmacological inhibition of GCS resulted in increases in basal glucose uptake, total GLUT1 levels, triglyceride biosynthesis from glucose, and lipid droplet formation, indicating that the effects of GCS inhibition are the opposite to those resulting from ARAP2 knockdown. Taken together, our data suggest that ARAP2 promotes lipid droplet formation by modifying sphingolipid metabolism through GCS.
  •  
6.
  • Glise, Lars, 1988, et al. (författare)
  • pH-Dependent Protonation of Histidine Residues Is Critical for Electrostatic Binding of Low-Density Lipoproteins to Human Coronary Arteries
  • 2022
  • Ingår i: Arteriosclerosis Thrombosis and Vascular Biology. - : Ovid Technologies (Wolters Kluwer Health). - 1079-5642 .- 1524-4636. ; 42:8, s. 1037-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The initiating step in atherogenesis is the electrostatic binding of LDL (low-density lipoprotein) to proteoglycan glycosaminoglycans in the arterial intima. However, although proteoglycans are widespread throughout the intima of most coronary artery segments, LDL is not evenly distributed, indicating that LDL retention is not merely dependent on the presence of proteoglycans. We aim to identify factors that promote the interaction between LDL and the vessel wall of human coronary arteries. Methods: We developed an ex vivo model to investigate binding of labeled human LDL to human coronary artery sections without the interference of cellular processes. Results: By staining consecutive sections of human coronary arteries, we found strong staining of sulfated glycosaminoglycans throughout the arterial intima, whereas endogenous LDL deposits were focally distributed. Ex vivo binding of LDL was uniform at all intimal areas with sulfated glycosaminoglycans. However, lowering the pH from 7.4 to 6.5 triggered a 35-fold increase in LDL binding. The pH-dependent binding was abolished by pretreating LDL with diethyl-pyrocarbonate, which blocks the protonation of histidine residues, or cyclohexanedione, which inhibits the positive charge of site B on LDL. Thus, both histidine protonation and site B are required for strong electrostatic LDL binding to the intima. Conclusions: This study identifies histidine protonation as an important component for electrostatic LDL binding to human coronary arteries. Our findings show that the local pH will have a profound impact on LDL's affinity for sulfated glycosaminoglycans, which may influence the retention and accumulation pattern of LDL in the arterial vasculature.
  •  
7.
  •  
8.
  • Håversen, Liliana, 1963, et al. (författare)
  • Vimentin deficiency in macrophages induces increased oxidative stress and vascular inflammation but attenuates atherosclerosis in mice
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim was to clarify the role of vimentin, an intermediate filament protein abundantly expressed in activated macrophages and foam cells, in macrophages during atherogenesis. Global gene expression, lipid uptake, ROS, and inflammation were analyzed in bone-marrow derived macrophages from vimentin-deficient (Vim(-/-)) and wild-type (Vim(-/-)) mice. Atherosclerosis was induced in Ldlr(-/-) mice transplanted with a PCSK9 gain-of-function virus. The mice were fed an atherogenic diet for 12-15 weeks. We observed impaired uptake of native LDL but increased uptake of oxLDL in Vim(-/-) macrophages. FACS analysis revealed increased surface expression of the scavenger receptor CD36 on Vim(-/-) macrophages. Vim(-/-) macrophages also displayed increased markers of oxidative stress, activity of the transcription factor NF-kappa B, secretion of proinflammatory cytokines and GLUT1-mediated glucose uptake. Vim(-/- )mice displayed decreased atherogenesis despite increased vascular inflammation and increased CD36 expression on macrophages in two mouse models of atherosclerosis. We demonstrate that vimentin has a strong suppressive effect on oxidative stress and that Vim(-/-) mice display increased vascular inflammation with increased CD36 expression on macrophages despite decreased subendothelial lipid accumulation. Thus, vimentin has a key role in regulating inflammation in macrophages during atherogenesis.
  •  
9.
  • Li, Lu, 1964, et al. (författare)
  • ARF6 Regulates Neuron Differentiation through Glucosylceramide Synthase
  • 2013
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The small GTPase ADP ribosylation factor 6 (ARF6) mediates endocytosis and has in addition been shown to regulate neuron differentiation. Here we investigated whether ARF6 promotes differentiation of Neuro-2a neuronal cells by modifying the cellular lipid composition. We showed that knockdown of ARF6 by siRNA in Neuro-2a cells increased neuronal outgrowth as expected. ARF6 knockdown also resulted in increased glucosylceramide levels and decreased sphingomyelin levels, but did not affect the levels of ceramide or phospholipids. We speculated that the ARF6 knockdown-induced increase in glucosylceramide was caused by an effect on glucosylceramide synthase and, in agreement, showed that ARF6 knockdown increased the mRNA levels and activity of glucosylceramide synthase. Finally, we showed that incubation of Neuro-2a cells with the glucosylceramide synthase inhibitor D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) normalized the increased neuronal outgrowth induced by ARF6 knockdown. Our results thus show that ARF6 regulates neuronal differentiation through an effect on glucosylceramide synthase and glucosylceramide levels.
  •  
10.
  • Li, Lu, 1964, et al. (författare)
  • The Importance of GLUT3 for De Novo Lipogenesis in Hypoxia-Induced Lipid Loading of Human Macrophages
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Atherosclerotic lesions are characterized by lipid-loaded macrophages (foam cells) and hypoxic regions. Although it is well established that foam cells are produced by uptake of cholesterol from oxidized LDL, we previously showed that hypoxia also promotes foam cell formation even in the absence of exogenous lipids. The hypoxia-induced lipid accumulation results from increased triglyceride biosynthesis but the exact mechanism is unknown. Our aim was to investigate the importance of glucose in promoting hypoxia-induced de novo lipid synthesis in human macrophages. In the absence of exogenous lipids, extracellular glucose promoted the accumulation of Oil Red O-stained lipid droplets in human monocyte-derived macrophages in a concentration-dependent manner. Lipid droplet accumulation was higher in macrophages exposed to hypoxia at all assessed concentrations of glucose. Importantly, triglyceride synthesis from glucose was increased in hypoxic macrophages. GLUT3 was highly expressed in macrophage-rich and hypoxic regions of human carotid atherosclerotic plaques and in macrophages isolated from these plaques. In human monocyte-derived macrophages, hypoxia increased expression of both GLUT3 mRNA and protein, and knockdown of GLUT3 with siRNA significantly reduced both glucose uptake and lipid droplet accumulation. In conclusion, we have shown that hypoxia-induced increases in glucose uptake through GLUT3 are important for lipid synthesis in macrophages, and may contribute to foam cell formation in hypoxic regions of atherosclerotic lesions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (20)
konferensbidrag (1)
doktorsavhandling (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (18)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Borén, Jan, 1963 (14)
Levin, Malin, 1973 (7)
Rutberg, Mikael, 195 ... (7)
Grötli, Morten (6)
Ståhlman, Marcus, 19 ... (5)
Mattsson Hultén, Lil ... (4)
visa fler...
Andersson, Linda, 19 ... (4)
Hanson, Lars Åke, 19 ... (4)
Fogelstrand, Per, 19 ... (4)
Mardinoglu, Adil (3)
Uhlén, Mathias (3)
Kim, Woonghee (3)
Li, Lu, 1964 (3)
Bergström, Göran, 19 ... (2)
Lange, Stefan, 1948 (2)
Silfverdal, Sven Arn ... (2)
Olofsson, Sven-Olof, ... (2)
Mardinoglu, Adil, 19 ... (2)
Zaman, Shakila (2)
Perkins, Rosie, 1965 (2)
Mobini, Reza, 1965 (2)
Andreasson, Joakim, ... (2)
Boström, Pontus, 198 ... (2)
Jansson, Per-Anders, ... (1)
Jalil, F (1)
Svensson, M.K, 1965 (1)
Ling, Charlotte (1)
Jeppsson, Anders, 19 ... (1)
Baltzer, Lars (1)
Larsson, Erik, 1975 (1)
Akula, Murali K (1)
Bergö, Martin O., 19 ... (1)
Akyürek, Levent, 196 ... (1)
Bandaru, Sashidar (1)
Hahn-Zoric, Mirjana, ... (1)
Levin, Max, 1969 (1)
Werner, B (1)
Liu, Bo (1)
Norin, Elisabeth (1)
Fogelstrand, Linda, ... (1)
Hahn-Zoric, M (1)
Amu, Sylvie, 1978 (1)
Ashraf, Rifat (1)
Olsson, Kristina (1)
Wilhelmsson, Ulrika, ... (1)
Pekny, Milos, 1965 (1)
Ekstrand, Matias (1)
Dolphin, Gunnar (1)
Andréasson, Måns (1)
Pedrelli, Matteo (1)
visa färre...
Lärosäte
Göteborgs universitet (22)
Kungliga Tekniska Högskolan (4)
Chalmers tekniska högskola (4)
Umeå universitet (2)
Karolinska Institutet (2)
Linköpings universitet (1)
visa fler...
Lunds universitet (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (16)
Naturvetenskap (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy