SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Höidén Guthenberg Ingmarie) "

Sökning: WFRF:(Höidén Guthenberg Ingmarie)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Feldwisch, Joachim, et al. (författare)
  • Design of an optimized scaffold for affibody molecules.
  • 2010
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 398:2, s. 232-247
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules are non-immunoglobulin-derived affinity proteins based on a three-helical bundle protein domain. Here, we describe the design process of an optimized Affibody molecule scaffold with improved properties and a surface distinctly different from that of the parental scaffold. The improvement was achieved by applying an iterative process of amino acid substitutions in the context of the human epidermal growth factor receptor 2 (HER2)-specific Affibody molecule Z(HER2:342). Replacements in the N-terminal region, loop 1, helix 2 and helix 3 were guided by extensive structural modeling using the available structures of the parent Z domain and Affibody molecules. The effect of several single substitutions was analyzed followed by combination of up to 11 different substitutions. The two amino acid substitutions N23T and S33K accounted for the most dramatic improvements, including increased thermal stability with elevated melting temperatures of up to +12 degrees C. The optimized scaffold contains 11 amino acid substitutions in the nonbinding surface and is characterized by improved thermal and chemical stability, as well as increased hydrophilicity, and enables generation of identical Affibody molecules both by chemical peptide synthesis and by recombinant bacterial expression. A HER2-specific Affibody tracer, [MMA-DOTA-Cys61]-Z(HER2:2891)-Cys (ABY-025), was produced by conjugating MMA-DOTA (maleimide-monoamide-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) to the peptide produced either chemically or in Escherichia coli. ABY-025 showed high affinity and specificity for HER2 (equilibrium dissociation constant, K(D), of 76 pM) and detected HER2 in tissue sections of SKOV-3 xenograft and human breast tumors. The HER2-binding capacity was fully retained after three cycles of heating to 90 degrees C followed by cooling to room temperature. Furthermore, the binding surfaces of five Affibody molecules targeting other proteins (tumor necrosis factor alpha, insulin, Taq polymerase, epidermal growth factor receptor or platelet-derived growth factor receptor beta) were grafted onto the optimized scaffold, resulting in molecules with improved thermal stability and a more hydrophilic nonbinding surface.
  •  
2.
  • Friedman, Mikaela, et al. (författare)
  • Directed evolution to low nanomolar affinity of a tumor-targeting epidermal growth factor receptor-binding affibody molecule
  • 2008
  • Ingår i: Journal of Molecular Biology. - : Elsevier BV. - 0022-2836 .- 1089-8638. ; 376:5, s. 1388-1402
  • Tidskriftsartikel (refereegranskat)abstract
    • The epidermal growth factor receptor 1 (EGFR) is overexpressed in various malignancies and is associated with a poor patient prognosis. A small, receptor-specific, high-affinity imaging agent would be a useful tool in diagnosing malignant tumors and in deciding upon treatment and assessing the response to treatment. We describe here the affinity maturation procedure for the generation of Affibody molecules binding with high affinity and specificity to EGFR. A library for affinity maturation was constructed by rerandomization of selected positions after the alignment of first-generation binding variants. New binders were selected with phage display technology, using a single oligonucleotide in a single-library effort, and the best second-generation binders had an approximately 30-fold improvement in affinity (K(d)=5-10 nM) for the soluble extracellular domain of EGFR in biospecific interaction analysis using Biacore. The dissociation equilibrium constant, K(d), was also determined for the Affibody with highest affinity using EGFR-expressing A431 cells in flow cytometric analysis (K(d)=2.8 nM). A retained high specificity for EGFR was verified by a dot blot assay showing staining only of EGFR proteins among a panel of serum proteins and other EGFR family member proteins (HER2, HER3, and HER4). The EGFR-binding Affibody molecules were radiolabeled with indium-111, showing specific binding to EGFR-expressing A431 cells and successful targeting of the A431 tumor xenografts with 4-6% injected activity per gram accumulated in the tumor 4 h postinjection.
  •  
3.
  • Friedman, Mikaela, et al. (författare)
  • Phage display selection of Affibody molecules with specific binding to the extracellular domain of the epidermal growth factor receptor
  • 2007
  • Ingår i: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134. ; 20:4, s. 189-199
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules specific for the epidermal growth factor receptor (EGFR) have been selected by phage display technology from a combinatorial protein library based on the 58-residue, protein A-derived Z domain. EGFR is overexpressed in various malignancies and is frequently associated with poor patient prognosis, and the information provided by targeting this receptor could facilitate both patient diagnostics and treatment. Three selected Affibody variants were shown to selectively bind to the extracellular domain of EGFR (EGFR-ECD). Kinetic biosensor analysis revealed that the three monomeric Affibody molecules bound with similar affinity, ranging from 130 to 185 nM. Head-to-tail dimers of the Affibody molecules were compared for their binding to recombinant EGFR-ECD in biosensor analysis and in human epithelial cancer A431 cells. Although the dimeric Affibody variants were found to bind in a range of 25-50 nM affinities in biosensor analysis, they were found to be low nanomolar binders in the cellular assays. Competition assays using radiolabeled Affibody dimers confirmed specific EGFR-binding and demonstrated that the three Affibody molecules competed for the same epitope. Immunofluorescence microscopy demonstrated that the selected Affibody dimers were initially binding to EGFR at the cell surface of A431, and confocal microscopy analysis showed that the Affibody dimers could thereafter be internalized. The potential use of the described Affibody molecules as targeting agents for radionuclide based imaging applications in various carcinomas is discussed.
  •  
4.
  • Grönwall, Caroline, et al. (författare)
  • Affibody-mediated transferrin depletion for proteomics applications
  • 2007
  • Ingår i: Biotechnology Journal. - : Wiley. - 1860-6768 .- 1860-7314. ; 2:11, s. 1389-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • An Affibody® (Affibody) ligand with specific binding to human transferrin was selected by phage display technology from a combinatorial protein library based on the staphylococcal protein A (SpA)-derived Z domain. Strong and selective binding of the selected Affibody ligand to transferrin was demonstrated using biosensor technology and dot blot analysis. Impressive specificity was demonstrated as transferrin was the only protein recovered by affinity chromatography from human plasma. Efficient Affibody-mediated capture of transferrin, combined with IgG- and HSA-depletion, was demonstrated for human plasma and cerebrospinal fluid (CSF). For plasma, 85% of the total transferrin content in the samples was depleted after only two cycles of transferrin removal, and for CSF, 78% efficiency was obtained in single-step depletion. These results clearly suggest a potential for the development of Affibody-based resins for the removal of abundant proteins in proteomics analyses.
  •  
5.
  • Göstring, Lovisa, et al. (författare)
  • Cellular Effects of HER3-Specific Affibody Molecules
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 7:6, s. e40023-
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent studies have led to the recognition of the epidermal growth factor receptor HER3 as a key player in cancer, and consequently this receptor has gained increased interest as a target for cancer therapy. We have previously generated several Affibody molecules with subnanomolar affinity for the HER3 receptor. Here, we investigate the effects of two of these HER3-specific Affibody molecules, Z05416 and Z05417, on different HER3-overexpressing cancer cell lines. Using flow cytometry and confocal microscopy, the Affibody molecules were shown to bind to HER3 on three different cell lines. Furthermore, the receptor binding of the natural ligand heregulin (HRG) was blocked by addition of Affibody molecules. In addition, both molecules suppressed HRG-induced HER3 and HER2 phosphorylation in MCF-7 cells, as well as HER3 phosphorylation in constantly HER2-activated SKBR-3 cells. Importantly, Western blot analysis also revealed that HRG-induced downstream signalling through the Ras-MAPK pathway as well as the PI3K-Akt pathway was blocked by the Affibody molecules. Finally, in an in vitro proliferation assay, the two Affibody molecules demonstrated complete inhibition of HRG-induced cancer cell growth. Taken together, our findings demonstrate that Z05416 and Z05417 exert an anti-proliferative effect on two breast cancer cell lines by inhibiting HRG-induced phosphorylation of HER3, suggesting that the Affibody molecules are promising candidates for future HER3-targeted cancer therapy.
  •  
6.
  • Göstring, Lovisa, et al. (författare)
  • Quantification of internalization of EGFR-binding Affibody molecules : Methodological aspects
  • 2010
  • Ingår i: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 36:4, s. 757-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor cell internalization of targeting agents is of interest, since internalization influences the local retention time of a radionuclide and thereby imaging quality in PET and SPECT and effects of radionuclide therapy. In cases where nuclear methods are not applicable at the cellular level, quantitative fluorescent techniques are useful as described in this article. Two fluorescence-based methods to study cellular internalization were applied: the CypHer and the Alexa488-quenching methods, both utilized in fluorescence microscopy and flow cytometry. Two EGFR-binding Affibody molecules were analyzed in A431 cells: the monomer Z1907 and the dimer (Z1907)2. EGF, cetuximab and non-specific Affibody molecules were used as controls. For comparison, internalization of 111In-labeled Z1907 was studied with the acid wash internalization assay. The Cypher method is straightforward, but requires equal labeling of all compounds for accurate quantification. The Alexa488-quenching method is preferable since it is independent of the dye-to-protein ratio. According to this method, about 45% of EGF and 19-24% of the bound Affibody molecules and cetuximab were internalized within one hour. Similar results were seen with 111In-Z1907 in the acid wash method, while (Z1907)2 was not removed by acid and thus could not be studied this way. The fluorescence-based Alexa488-quenching method is well suited to quantitatively analyze internalization of targeting agents, also those that resist acid wash. The internalized fraction showed that both the monomeric and dimeric Affibody molecules are expected to give good uptake and thereby good retention of metallic radionuclides which will render good tumor to background values.
  •  
7.
  • Honarvar, Hadis, et al. (författare)
  • Imaging of CAIX-expressing xenografts in vivo using 99mTc-HEHEHE-ZCAIX : 1 Affibody molecule
  • 2015
  • Ingår i: International Journal of Oncology. - : Spandidos Publications. - 1019-6439 .- 1791-2423. ; 46:2, s. 513-20
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbonic anhydrase IX (CAIX) is a transmembrane enzyme involved in regulation of tissue pH balance. In cancer, CAIX expression is associated with tumor hypoxia. CAIX is also overexpressed in renal cell carcinoma and is a molecular target for the therapeutic antibody cG250 (girentuximab). Radionuclide imaging of CAIX expression might be used for identification of patients who may benefit from cG250 therapy and from treatment strategies for hypoxic tumors. Affibody molecules are small (7 kDa) scaffold proteins having a high potential as probes for radionuclide molecular imaging. The aim of the present study was to evaluate feasibility of in vivo imaging of CAIX-expression using radiolabeled Affibody molecules. A histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag-containing CAIX-binding Affibody molecule (HE)3-ZCAIX:1 was labeled with [99mTc(CO)3]+. Its binding properties were evaluated in vitro using CAIX-expressing SK-RC-52 renal carcinoma cells. 99mTc-(HE)3-ZCAIX:1 was evaluated in NMRI nu/nu mice bearing SK-RC-52 xenografts. The in vivo specificity test confirmed CAIX-mediated tumor targeting. 99mTc-(HE)3-ZCAIX:1 cleared rapidly from blood and normal tissues except for kidneys. At optimal time-point (4 h p.i.), the tumor uptake was 9.7±0.7% ID/g, and tumor-to-blood ratio was 53±10. Experimental imaging of CAIX-expressing SK-RC-52 xenografts at 4 h p.i. provided high contrast images. The use of radioiodine label for ZCAIX:1 enabled the reduction of renal uptake, but resulted in significantly lower tumor uptake and tumor-to-blood ratio. Results of the present study suggest that radiolabeled Affibody molecules are promising probes for imaging of CAIX-expression in vivo.
  •  
8.
  • Kronqvist, Nina, et al. (författare)
  • Combining phage and staphylococcal surface display for generation of ErbB3-specific Affibody molecules
  • 2011
  • Ingår i: Protein Engineering Design & Selection. - : Oxford University Press (OUP). - 1741-0126 .- 1741-0134. ; 24:4, s. 385-396
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that the catalytically inactive ErbB3 (HER3) protein plays a fundamental role in normal tyrosine kinase receptor signaling as well as in aberrant functioning of these signaling pathways, resulting in several forms of human cancers. ErbB3 has recently also been implicated in resistance to ErbB2-targeting therapies. Here we report the generation of high-affinity ErbB3-specific Affibody molecules intended for future molecular imaging and biotherapeutic applications. Using a high-complexity phage-displayed Affibody library, a number of ErbB3 binders were isolated and specific cell-binding activity was demonstrated in immunofluorescence microscopic studies. Subsequently, a second-generation library was constructed based on sequences of the candidates from the phage display selection. By exploiting the sensitive affinity discrimination capacity of a novel bacterial surface display technology, the affinity of candidate Affibody molecules was further increased down to subnanomolar affinity. In summary, the demonstrated specific targeting of native ErbB3 receptor on human cancer cell lines as well as competition with the heregulin/ErbB3 interaction indicates that these novel biological agents may become useful tools for diagnostic and therapeutic targeting of ErbB3-expressing cancers. Our studies also highlight the powerful approach of combining the advantages of different display technologies for generation of functional high-affinity protein-based binders. Potential future applications, such as radionuclide-based diagnosis and treatment of human cancers are discussed.
  •  
9.
  •  
10.
  • Li, Jingjing, et al. (författare)
  • Selection of affibody molecules to the ligand-binding site of the insulin-like growth factor-1 receptor
  • 2010
  • Ingår i: Biotechnology and applied biochemistry. - : Wiley. - 0885-4513 .- 1470-8744. ; 55, s. 99-109
  • Tidskriftsartikel (refereegranskat)abstract
    • Affibody molecules binding to the site of hormone interaction in IGF-IR (insulin-like growth factor-I receptor) were successfully selected by phage-display technology employing a competitive-elution strategy during biopanning, whereby release of receptor-bound phagemids was accomplished by competition with IGFI (insulin-like growth factor-I). In non-competitive selections, the elution of receptor-bound phagemids was performed by imidazole or low-pH incubation, which also resulted in the isolation of affibody molecules that could bind to the receptor. An ELISA-based assay showed that the affibody molecules generated by IGF-I competition during elution, in addition to affibody molecules generated in the noncompetitive selections, could compete with IGF-I for binding to the receptor. The affinities of the isolated variants to IGF-IR-overexpressing MCF-7 cells were determined and ranged from high nanomolar to 2.3 nM. The most promising variant, Z(4;40), was shown to recognize IGF- IR efficiently in several different contexts: in analyses based on flow cytometry, fluorescence microscopy and receptor pull-down from cell extracts. In addition, when Z, was added to the medium of MCF-7 cells that were dependent on IGF-I for efficient growth, it was found to have a dose-dependent growth-inhibitory effect on the cells. Applications of affibody-based reagents for quantitative and qualitative analyses of IGF- I R status, as well as applications of affibody-based reagents for therapy, are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy