SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ha Hojin) "

Sökning: WFRF:(Ha Hojin)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bissell, Malenka M., et al. (författare)
  • 4D Flow cardiovascular magnetic resonance consensus statement : 2023 update
  • 2023
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BMC. - 1097-6647 .- 1532-429X. ; 25:1
  • Forskningsöversikt (refereegranskat)abstract
    • Hemodynamic assessment is an integral part of the diagnosis and management of cardiovascular disease. Four-dimensional cardiovascular magnetic resonance flow imaging (4D Flow CMR) allows comprehensive and accurate assessment of flow in a single acquisition. This consensus paper is an update from the 2015 ‘4D Flow CMR Consensus Statement’. We elaborate on 4D Flow CMR sequence options and imaging considerations. The document aims to assist centers starting out with 4D Flow CMR of the heart and great vessels with advice on acquisition parameters, post-processing workflows and integration into clinical practice. Furthermore, we define minimum quality assurance and validation standards for clinical centers. We also address the challenges faced in quality assurance and validation in the research setting. We also include a checklist for recommended publication standards, specifically for 4D Flow CMR. Finally, we discuss the current limitations and the future of 4D Flow CMR. This updated consensus paper will further facilitate widespread adoption of 4D Flow CMR in the clinical workflow across the globe and aid consistently high-quality publication standards.
  •  
2.
  • Fernandes, Joao Filipe, et al. (författare)
  • Non-invasive cardiovascular magnetic resonance assessment of pressure recovery distance after aortic valve stenosis
  • 2023
  • Ingår i: Journal of Cardiovascular Magnetic Resonance. - : BMC. - 1097-6647 .- 1532-429X. ; 25:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundDecisions in the management of aortic stenosis are based on the peak pressure drop, captured by Doppler echocardiography, whereas gold standard catheterization measurements assess the net pressure drop but are limited by associated risks. The relationship between these two measurements, peak and net pressure drop, is dictated by the pressure recovery along the ascending aorta which is mainly caused by turbulence energy dissipation. Currently, pressure recovery is considered to occur within the first 40-50 mm distally from the aortic valve, albeit there is inconsistency across interventionist centers on where/how to position the catheter to capture the net pressure drop.MethodsWe developed a non-invasive method to assess the pressure recovery distance based on blood flow momentum via 4D Flow cardiovascular magnetic resonance (CMR). Multi-center acquisitions included physical flow phantoms with different stenotic valve configurations to validate this method, first against reference measurements and then against turbulent energy dissipation (respectively n = 8 and n = 28 acquisitions) and to investigate the relationship between peak and net pressure drops. Finally, we explored the potential errors of cardiac catheterisation pressure recordings as a result of neglecting the pressure recovery distance in a clinical bicuspid aortic valve (BAV) cohort of n = 32 patients.ResultsIn-vitro assessment of pressure recovery distance based on flow momentum achieved an average error of 1.8 +/- 8.4 mm when compared to reference pressure sensors in the first phantom workbench. The momentum pressure recovery distance and the turbulent energy dissipation distance showed no statistical difference (mean difference of 2.8 +/- 5.4 mm, R-2 = 0.93) in the second phantom workbench. A linear correlation was observed between peak and net pressure drops, however, with strong dependences on the valvular morphology. Finally, in the BAV cohort the pressure recovery distance was 78.8 +/- 34.3 mm from vena contracta, which is significantly longer than currently accepted in clinical practise (40-50 mm), and 37.5% of patients displayed a pressure recovery distance beyond the end of the ascending aorta.ConclusionThe non-invasive assessment of the distance to pressure recovery is possible by tracking momentum via 4D Flow CMR. Recovery is not always complete at the ascending aorta, and catheterised recordings will overestimate the net pressure drop in those situations. There is a need to re-evaluate the methods that characterise the haemodynamic burden caused by aortic stenosis as currently clinically accepted pressure recovery distance is an underestimation.
  •  
3.
  • Ha, Hojin, et al. (författare)
  • 4D Flow MRI quantification of blood flow patterns, turbulence and pressure drop in normal and stenotic prosthetic heart valves
  • 2019
  • Ingår i: Magnetic Resonance Imaging. - : ELSEVIER SCIENCE INC. - 0730-725X .- 1873-5894. ; 55, s. 118-127
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To assess valvular flow characteristics and pressure drop in a variety of normal and stenotic prosthetic heart valves (PHVs) using 4D Flow MRI. Materials and methods: In-vitro flow phantoms with four different PHVs were studied: Medtronic-Hall tilting disc, St. Jude Medical standard bileaflet (STJM), Medtronic CoreValve Evolut R and Edwards SAPIEN 3. The valvular flow characteristics were investigated in normal and stenotic PHVs by using 4D Flow MRI. Results: The results showed that each valve provided a different amount of signal loss in the 4D Flow MRI. The defect size of the signal loss from each valve was 37.5 mm, 39.0 mm, 37.5 mm and 51.0 mm for the Tilting disk, STJM, SAPIEN 3 and CoreValve, respectively. The 4D Flow MRI-based estimation of the elevation of the pressure drop through the stenotic PHV using both Bernoulli-based and turbulence-based methods correlated well with the true values for the Tilting disc, STJM and SAPIEN 3 valve. However, the obstructive hemodynamics in the stenotic CoreValve was not clearly identified due to the large signal void from the long struts, resulting in a severe underestimation of the pressure drop using 4D Flow MRI. Conclusion: The Tilting disc, STJM and SAPIEN 3 valves provided reasonable estimates of peak velocity, turbulence production and the corresponding pressure drop. In contrast, the large strut of the CoreValve and corresponding signal void prevented accurate measurements of the velocity and turbulence production; therefore, 4D Flow MRI prediction of the pressure drop through the CoreValve was not feasible.
  •  
4.
  • Ha, Hojin, et al. (författare)
  • Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow
  • 2018
  • Ingår i: Frontiers in Physiology. - : FRONTIERS MEDIA SA. - 1664-042X. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Turbulent blood flow is implicated in the pathogenesis of several aortic diseases but the extent and degree of turbulent blood flow in the normal aorta is unknown. We aimed to quantify the extent and degree of turbulece in the normal aorta and to assess whether age impacts the degree of turbulence. 22 young normal males (23.7 +/- 3.0 y.o.) and 20 old normal males (70.9 +/- 3.5 y.o.) were examined using four dimensional flow magnetic resonance imaging (4D Flow MRI) to quantify the turbulent kinetic energy (TKE), a measure of the intensity of turbulence, in the aorta. All healthy subjects developed turbulent flow in the aorta, with total TKE of 3-19 mJ. The overall degree of turbulence in the entire aorta was similar between the groups, although the old subjects had about 73% more total TKE in the ascending aorta compared to the young subjects (young = 3.7 +/- 1.8 mJ, old = 6.4 +/- 2.4 mJ, p amp;lt; 0.001). This increase in ascending aorta TKE in old subjects was associated with age-related dilation of the ascending aorta which increases the volume available for turbulence development. Conversely, age-related dilation of the descending and abdominal aorta decreased the average flow velocity and suppressed the development of turbulence. In conclusion, turbulent blood flow develops in the aorta of normal subjects and is impacted by age-related geometric changes. Non-invasive assessment enables the determination of normal levels of turbulent flow in the aorta which is a prerequisite for understanding the role of turbulence in the pathophysiology of cardiovascular disease.
  •  
5.
  • Ha, Hojin, et al. (författare)
  • Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage
  • 2016
  • Ingår i: SCIENTIFIC REPORTS. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Flow-induced blood damage plays an important role in determining the hemodynamic impact of abnormal blood flow, but quantifying of these effects, which are dominated by shear stresses in highly fluctuating turbulent flow, has not been feasible. This study evaluated the novel application of turbulence tensor measurements using simulated 4D Flow MRI data with six-directional velocity encoding for assessing hemodynamic stresses and corresponding blood damage index (BDI) in stenotic turbulent blood flow. The results showed that 4D Flow MRI underestimates the maximum principal shear stress of laminar viscous stress (PLVS), and overestimates the maximum principal shear stress of Reynolds stress (PRSS) with increasing voxel size. PLVS and PRSS were also overestimated by about 1.2 and 4.6 times at medium signal to noise ratio (SNR) = 20. In contrast, the square sum of the turbulent viscous shear stress (TVSS), which is used for blood damage index (BDI) estimation, was not severely affected by SNR and voxel size. The square sum of TVSS and the BDI at SNR amp;gt;20 were underestimated by less than 1% and 10%, respectively. In conclusion, this study demonstrated the feasibility of 4D Flow MRI based quantification of TVSS and BDI which are closely linked to blood damage.
  •  
6.
  • Ha, Hojin, et al. (författare)
  • Estimating the irreversible pressure drop across a stenosis by quantifying turbulence production using 4D Flow MRI
  • 2017
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • The pressure drop across a stenotic vessel is an important parameter in medicine, providing a commonly used and intuitive metric for evaluating the severity of the stenosis. However, non-invasive estimation of the pressure drop under pathological conditions has remained difficult. This study demonstrates a novel method to quantify the irreversible pressure drop across a stenosis using 4D Flow MRI by calculating the total turbulence production of the flow. Simulation MRI acquisitions showed that the energy lost to turbulence production can be accurately quantified with 4D Flow MRI within a range of practical spatial resolutions (1-3 mm; regression slope = 0.91, R-2 = 0.96). The quantification of the turbulence production was not substantially influenced by the signal-to-noise ratio (SNR), resulting in less than 2% mean bias at SNR amp;gt; 10. Pressure drop estimation based on turbulence production robustly predicted the irreversible pressure drop, regardless of the stenosis severity and post-stenosis dilatation (regression slope = 0.956, R-2 = 0.96). In vitro validation of the technique in a 75% stenosis channel confirmed that pressure drop prediction based on the turbulence production agreed with the measured pressure drop (regression slope = 1.15, R-2 = 0.999, Bland-Altman agreement = 0.75 +/- 3.93 mmHg).
  •  
7.
  • Ha, Hojin, et al. (författare)
  • In-vitro and In-Vivo Assessment of 4D Flow MRI Reynolds Stress Mapping for Pulsatile Blood Flow
  • 2021
  • Ingår i: Frontiers in Bioengineering and Biotechnology. - : Frontiers Media S.A.. - 2296-4185. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Imaging hemodynamics play an important role in the diagnosis of abnormal blood flow due to vascular and valvular diseases as well as in monitoring the recovery of normal blood flow after surgical or interventional treatment. Recently, characterization of turbulent blood flow using 4D flow magnetic resonance imaging (MRI) has been demonstrated by utilizing the changes in signal magnitude depending on intravoxel spin distribution. The imaging sequence was extended with a six-directional icosahedral (ICOSA6) flow-encoding to characterize all elements of the Reynolds stress tensor (RST) in turbulent blood flow. In the present study, we aimed to demonstrate the feasibility of full RST analysis using ICOSA6 4D flow MRI under physiological conditions. First, the turbulence analysis was performed through in vitro experiments with a physiological pulsatile flow condition. Second, a total of 12 normal subjects and one patient with severe aortic stenosis were analyzed using the same sequence. The in-vitro study showed that total turbulent kinetic energy (TKE) was less affected by the signal-to-noise ratio (SNR), however, maximum principal turbulence shear stress (MPTSS) and total turbulence production (TP) had a noise-induced bias. Smaller degree of the bias was observed for TP compared to MPTSS. In-vivo study showed that the subject-variability on turbulence quantification was relatively low for the consistent scan protocol. The in vivo demonstration of the stenosis patient showed that the turbulence analysis could clearly distinguish the difference in all turbulence parameters as they were at least an order of magnitude larger than those from the normal subjects.
  •  
8.
  • Ha, Hojin, et al. (författare)
  • In vitro experiments on ICOSA6 4D flow MRI measurement for the quantification of velocity and turbulence parameters
  • 2020
  • Ingår i: Magnetic Resonance Imaging. - : ELSEVIER SCIENCE INC. - 0730-725X .- 1873-5894. ; 72, s. 49-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: To perform comprehensive in vitro experiments using six-directional icosahedral flow encoding (ICOSA6) 4D flow magnetic resonance imaging (MRI) under various scan conditions to analyze the robustness of velocity and turbulence quantification. Materials and methods: In vitro flow phantoms with steady flow rates of 10 and 20 L/min were scanned using both conventional 4D flow MRI and ICOSA6. Experiments focused on comparisons between ICOSA6 and conventional four point (4P) methods, and the effects of contrast agents, velocity encoding range (Venc), and scan direction on velocity and turbulence quantification. Results: The results demonstrated that 1) ICOSA6 improves the velocity-to-noise ratio (VNR) of velocity estimation by 33% (on average) and results in similar turbulent kinetic energy (TKE) estimation as the 4P method. 2) Measurements with a contrast agent resulted in more than a 2.5 fold increase in average VNR. However, the improvement of total TKE quantification was not obvious. 3) TKE estimation was less affected by Venc and the scan direction, whereas turbulence production (TP) estimation was largely affected by these measurement conditions. The effects of Venc and scan direction accounted for less than 11.63% of TKE estimation, but up to 33.89% of TP estimation. Conclusion: The ICOSA6 scheme is compatible with conventional 4D flow MRI for velocity and TKE measurement. Contrast agents are effective at increasing VNR, but not signal-to-noise ratio for TKE quantification. The effects of Venc and scan direction influence total TP more than total TKE.
  •  
9.
  •  
10.
  • Ha, Hojin, et al. (författare)
  • Validation of pressure drop assessment using 4D flow MRI-based turbulence production in various shapes of aortic stenoses
  • 2019
  • Ingår i: Magnetic Resonance in Medicine. - : Wiley-Blackwell. - 0740-3194 .- 1522-2594. ; 81:2, s. 893-906
  • Tidskriftsartikel (refereegranskat)abstract
    • PurposeTo validate pressure drop measurements using 4D flow MRI‐based turbulence production in various shapes of stenotic stenoses.MethodsIn vitro flow phantoms with seven different 3D‐printed aortic valve geometries were constructed and scanned with 4D flow MRI with six‐directional flow encoding (ICOSA6). The pressure drop through the valve was non‐invasively predicted based on the simplified Bernoulli, the extended Bernoulli, the turbulence production, and the shear‐scaling methods. Linear regression and agreement of the predictions with invasively measured pressure drop were analyzed.ResultsAll pressure drop predictions using 4D Flow MRI were linearly correlated to the true pressure drop but resulted in different regression slopes. The regression slope and 95% limits of agreement for the simplified Bernoulli method were 1.35 and 11.99 ± 21.72 mm Hg. The regression slope and 95% limits of agreement for the extended Bernoulli method were 1.02 and 0.74 ± 8.48 mm Hg. The regression slope and 95% limits of agreement for the turbulence production method were 0.89 and 0.96 ± 8.01 mm Hg. The shear‐scaling method presented good correlation with an invasively measured pressure drop, but the regression slope varied between 0.36 and 1.00 depending on the shear‐scaling coefficient.ConclusionThe pressure drop assessment based on the turbulence production method agrees well with the extended Bernoulli method and invasively measured pressure drop in various shapes of the aortic valve. Turbulence‐based pressure drop estimation can, as a complement to the conventional Bernoulli method, play a role in the assessment of valve diseases.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12
Typ av publikation
tidskriftsartikel (10)
annan publikation (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (10)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Ha, Hojin (12)
Ebbers, Tino (11)
Dyverfeldt, Petter (8)
Karlsson, Matts (2)
Lantz, Jonas (2)
Yang, Dong Hyun (2)
visa fler...
Colarieti-Tosti, Mas ... (2)
Länne, Toste (1)
Carlhäll, Carl-Johan ... (1)
Raimondi, Francesca (1)
Carlhäll, Carljohan (1)
Töger, Johannes (1)
Nordsletten, David A ... (1)
Larsson, Matilda (1)
Kim, Young-Hak (1)
Welander, Martin (1)
Wieben, Oliver (1)
Bissell, Malenka M. (1)
Ait Ali, Lamia (1)
Allen, Bradley D. (1)
Barker, Alex J. (1)
Bolger, Ann F (1)
Burris, Nicholas (1)
Collins, Jeremy D. (1)
Francois, Christophe ... (1)
Frydrychowicz, Alex (1)
Garg, Pankaj (1)
Geiger, Julia (1)
Hennemuth, Anja (1)
Hope, Michael D. (1)
Hsiao, Albert (1)
Johnson, Kevin (1)
Kozerke, Sebastian (1)
Ma, Liliana E. (1)
Markl, Michael (1)
Martins, Duarte (1)
Messina, Marci (1)
Oechtering, Thekla H ... (1)
van Ooij, Pim (1)
Rigsby, Cynthia (1)
Rodriguez-Palomares, ... (1)
Roest, Arno A.W. (1)
Roldán-Alzate, Aleja ... (1)
Schnell, Susanne (1)
Sotelo, Julio (1)
Stuber, Matthias (1)
Syed, Ali B. (1)
van der Geest, Rob (1)
Westenberg, Jos (1)
Zhong, Liang (1)
visa färre...
Lärosäte
Linköpings universitet (11)
Kungliga Tekniska Högskolan (2)
Karolinska Institutet (2)
Lunds universitet (1)
Språk
Engelska (12)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (7)
Teknik (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy