SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ha Nam Chul) "

Sökning: WFRF:(Ha Nam Chul)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ju, Jin Sung, et al. (författare)
  • A novel 40-kDa protein containing six repeats of an epidermal growth factor-like domain functions as a pattern recognition protein for lipopolysaccharide
  • 2006
  • Ingår i: Journal of Immunology. - 0022-1767 .- 1550-6606. ; 177:3, s. 1838-1845
  • Tidskriftsartikel (refereegranskat)abstract
    • Determination of structures and functions of pattern recognition proteins are important for understanding pathogen recognition mechanisms in host defense and for elucidating the activation mechanism of innate immune reactions. In this study, a novel 40-kDa protein, named LPS recognition protein (LRP), was purified to homogeneity from the cell-free plasma of larvae of the large beetle, Holotrichia diomphalia. LRP exhibited agglutinating activities on Escherichia coli, but not on Staphylococcus aureus and Candida albicans. This E. coli-agglutinating activity was preferentially inhibited by the rough-type LPS with a complete core oligosaccharide. LRP consists of 317 aa residues and six repeats of an epidermal growth factor-like domain-Recombinant LRP expressed in a baculovirus system also showed E. coli agglutination activity in vitro and was able to neutralize LPS by inhibition of LPS-induced IL-6 production in mouse bone marrow mast cells. Furthermore, E. coli coated with the purified LRP were more rapidly cleared in the Holotrichia larvae than only E. coli, indicating that this protein participates in the clearance of E. coli in vivo. The three amino-terminal epidermal growth factor-like domains of LRP, but not the three carboxyl epidermal growth factor-like domains, are involved in the LPS-binding activity. Taken together, this LRP functions as a pattern recognition protein for LPS and plays a role as an innate immune protein.
  •  
2.
  • Kim, Chan-Hee, et al. (författare)
  • A three-step proteolytic cascade mediates the activation of the peptidoglycan-induced toll pathway in an insect
  • 2008
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 283:12, s. 7599-7607
  • Tidskriftsartikel (refereegranskat)abstract
    • The recognition of lysine-type peptidoglycans (PG) by the PG recognition complex has been suggested to cause activation of the serine protease cascade leading to the processing of Spätzle and subsequent activation of the Toll signaling pathway. So far, two serine proteases involved in the lysine-type PG Toll signaling pathway have been identified. One is a modular serine protease functioning as an initial enzyme to be recruited into the lysine-type PG recognition complex. The other is the Drosophila Spätzle processing enzyme (SPE), a terminal enzyme that converts Spätzle pro-protein to its processed form capable of binding to the Toll receptor. However, it remains unclear how the initial PG recognition signal is transferred to Spätzle resulting in Toll pathway activation. Also, the biochemical characteristics and mechanism of action of a serine protease linking the modular serine protease and SPE have not been investigated. Here, we purified and cloned a novel upstream serine protease of SPE that we named SAE, SPE-activating enzyme, from the hemolymph of a large beetle, Tenebrio molitor larvae. This enzyme was activated by Tenebrio modular serine protease and in turn activated the Tenebrio SPE. The biochemical ordered functions of these three serine proteases were determined in vitro, suggesting that the activation of a three-step proteolytic cascade is necessary and sufficient for lysine-type PG recognition signaling. The processed Spätzle by this cascade induced antibacterial activity in vivo. These results demonstrate that the three-step proteolytic cascade linking the PG recognition complex and Spätzle processing is essential for the PG-dependent Toll signaling pathway.
  •  
3.
  •  
4.
  • Park, Ji-Won, et al. (författare)
  • Beetle Immunity
  • 2010
  • Ingår i: Advances in Experimental Medicine and Biology. - Boston, MA : Springer US. - 0065-2598 .- 2214-8019. ; 708, s. 163-180
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic studies have elegantly characterized the innate immune response in Drosophila melanogaster. However, these studies have a limited ability to reveal the biochemical mechanisms underlying the innate immune response. To investigate the biochemical basis of how insects recognize invading microbes and how these recognition signals activate the innate immune response, it is necessary to use insects, from which larger amounts of hemolymph can be extracted. Using the larvae from two species of beetle, Tenebrio molitor and Holotrichia diomphalia, we elucidated the mechanisms underlying pathogenic microbe recognition. In addition, we studied the mechanism of host defense molecule amplification. In particular, we identified several pattern recognition proteins, serine proteases, serpins and antimicrobial peptides and examined how these molecules affect innate immunity.
  •  
5.
  • Roh, Kyung-Baeg, et al. (författare)
  • Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component
  • 2009
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 284:29, s. 19474-19481
  • Tidskriftsartikel (refereegranskat)abstract
    • The insect Toll signaling pathway is activated upon recognition of Gram-positive bacteria and fungi, resulting in the expression of antimicrobial peptides via NF-kappaB-like transcription factor. This activation is mediated by a serine protease cascade leading to the processing of Spätzle, which generates the functional ligand of the Toll receptor. Recently, we identified three serine proteases mediating Toll pathway activation induced by lysine-type peptidoglycan of Gram-positive bacteria. However, the identities of the downstream serine protease components of Gram-negative-binding protein 3 (GNBP3), a receptor for a major cell wall component beta-1,3-glucan of fungi, and their order of activation have not been characterized yet. Here, we identified three serine proteases that are required for Toll activation by beta-1,3-glucan in the larvae of a large beetle, Tenebrio molitor. The first one is a modular serine protease functioning immediately downstream of GNBP3 that proteolytically activates the second one, a Spätzle-processing enzyme-activating enzyme that in turn activates the third serine protease, a Spätzle-processing enzyme. The active form of Spätzle-processing enzyme then cleaves Spätzle into the processed Spätzle as Toll ligand. In addition, we show that injection of beta-1,3-glucan into Tenebrio larvae induces production of two antimicrobial peptides, Tenecin 1 and Tenecin 2, which are also inducible by injection of the active form of Spätzle-processing enzyme-activating enzyme or processed Spätzle. These results demonstrate a three-step proteolytic cascade essential for the Toll pathway activation by fungal beta-1,3-glucan in Tenebrio larvae, which is shared with lysine-type peptidoglycan-induced Toll pathway activation.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy