SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Habibi Mahnaz) "

Sökning: WFRF:(Habibi Mahnaz)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aghdam, Rosa, et al. (författare)
  • Using informative features in machine learning based method for COVID-19 drug repurposing
  • 2021
  • Ingår i: Journal of Cheminformatics. - : Springer Nature. - 1758-2946. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Coronavirus disease 2019 (COVID-19) is caused by a novel virus named Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). This virus induced a large number of deaths and millions of confirmed cases worldwide, creating a serious danger to public health. However, there are no specific therapies or drugs available for COVID-19 treatment. While new drug discovery is a long process, repurposing available drugs for COVID-19 can help recognize treatments with known clinical profiles. Computational drug repurposing methods can reduce the cost, time, and risk of drug toxicity. In this work, we build a graph as a COVID-19 related biological network. This network is related to virus targets or their associated biological processes. We select essential proteins in the constructed biological network that lead to a major disruption in the network. Our method from these essential proteins chooses 93 proteins related to COVID-19 pathology. Then, we propose multiple informative features based on drug-target and protein-protein interaction information. Through these informative features, we find five appropriate clusters of drugs that contain some candidates as potential COVID-19 treatments. To evaluate our results, we provide statistical and clinical evidence for our candidate drugs. From our proposed candidate drugs, 80% of them were studied in other studies and clinical trials.
  •  
2.
  • Habibi, Mahnaz, et al. (författare)
  • A new machine learning method for cancer mutation analysis
  • 2022
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 18:10
  • Tidskriftsartikel (refereegranskat)abstract
    • It is complicated to identify cancer-causing mutations. The recurrence of a mutation in patients remains one of the most reliable features of mutation driver status. However, some mutations are more likely to happen than others for various reasons. Different sequencing analysis has revealed that cancer driver genes operate across complex pathways and networks, with mutations often arising in a mutually exclusive pattern. Genes with low-frequency mutations are understudied as cancer-related genes, especially in the context of networks. Here we propose a machine learning method to study the functionality of mutually exclusive genes in the networks derived from mutation associations, gene-gene interactions, and graph clustering. These networks have indicated critical biological components in the essential pathways, especially those mutated at low frequency. Studying the network and not just the impact of a single gene significantly increases the statistical power of clinical analysis. The proposed method identified important driver genes with different frequencies. We studied the function and the associated pathways in which the candidate driver genes participate. By introducing lower-frequency genes, we recognized less studied cancer-related pathways. We also proposed a novel clustering method to specify driver modules. We evaluated each driver module with different criteria, including the terms of biological processes and the number of simultaneous mutations in each cancer. Materials and implementations are available at: https://github.com/MahnazHabibi/MutationAnalysis. Author summary It can be challenging to find mutations that cause cancer. One of the most trustworthy characteristics for identifying cancer-causing mutations is the recurrence of a mutation in patients. However, some uncommon and low-frequency mutations should also be explored as cancer-related mutations, particularly in the setting of networks. In this study, we suggested a unique approach to discover prospective driver genes and investigate the functionality of mutually exclusive genes in networks formed from mutation connections and gene-gene interactions. These networks have identified critical biological elements in the vital pathways, notably in those that experience infrequent mutations. In the first step, we established six enlightening topological features for each gene acting as a network node. For each gene, we computed the score for our predefined features. Then, we suggested the high-scoring genes with significant connections to cancer as potential targets for further research. In the second step, we constructed a network based on the relationships between the high-score genes to find the cancer-related modules. We used what we had learned in the first step about how the high-score potential driver genes interact physically, biologically, and in terms of how they work to build this network.
  •  
3.
  • Habibi, Mahnaz, et al. (författare)
  • A SARS-CoV-2 (COVID-19) biological network to find targets for drug repurposing
  • 2021
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 virus needs a fast recognition of effective drugs to save lives. In the COVID-19 situation, finding targets for drug repurposing can be an effective way to present new fast treatments. We have designed a two-step solution to address this approach. In the first step, we identify essential proteins from virus targets or their associated modules in human cells as possible drug target candidates. For this purpose, we apply two different algorithms to detect some candidate sets of proteins with a minimum size that drive a significant disruption in the COVID-19 related biological networks. We evaluate the resulted candidate proteins sets with three groups of drugs namely Covid-Drug, Clinical-Drug, and All-Drug. The obtained candidate proteins sets approve 16 drugs out of 18 in the Covid-Drug, 273 drugs out of 328 in the Clinical-Drug, and a large number of drugs in the All-Drug. In the second step, we study COVID-19 associated proteins sets and recognize proteins that are essential to disease pathology. This analysis is performed using DAVID to show and compare essential proteins that are contributed between the COVID-19 comorbidities. Our results for shared proteins show significant enrichment for cardiovascular-related, hypertension, diabetes type 2, kidney-related and lung-related diseases.
  •  
4.
  • Habibi, Mahnaz, et al. (författare)
  • Topological network based drug repurposing for coronavirus 2019
  • 2021
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has become the current health concern and threat to the entire world. Thus, the world needs the fast recognition of appropriate drugs to restrict the spread of this disease. The global effort started to identify the best drug compounds to treat COVID-19, but going through a series of clinical trials and our lack of information about the details of the virus's performance has slowed down the time to reach this goal. In this work, we try to select the subset of human proteins as candidate sets that can bind to approved drugs. Our method is based on the information on human-virus protein interaction and their effect on the biological processes of the host cells. We also define some informative topological and statistical features for proteins in the protein-protein interaction network. We evaluate our selected sets with two groups of drugs. The first group contains the experimental unapproved treatments for COVID-19, and we show that from 17 drugs in this group, 15 drugs are approved by our selected sets. The second group contains the external clinical trials for COVID-19, and we show that 85% of drugs in this group, target at least one protein of our selected sets. We also study COVID-19 associated protein sets and identify proteins that are essential to disease pathology. For this analysis, we use DAVID tools to show and compare disease-associated genes that are contributed between the COVID-19 comorbidities. Our results for shared genes show significant enrichment for cardiovascular-related, hypertension, diabetes type 2, kidney-related and lung-related diseases. In the last part of this work, we recommend 56 potential effective drugs for further research and investigation for COVID-19 treatment. Materials and implementations are available at: .https://github.com/ MahnazHabibi/Drug-repurposing.
  •  
5.
  • Taheri, Golnaz, et al. (författare)
  • Comprehensive analysis of pathways in Coronavirus 2019 (COVID-19) using an unsupervised machine learning method
  • 2022
  • Ingår i: Applied Soft Computing. - : Elsevier BV. - 1568-4946 .- 1872-9681. ; 128
  • Tidskriftsartikel (refereegranskat)abstract
    • The World Health Organization (WHO) introduced “Coronavirus disease 19” or “COVID-19” as a novel coronavirus in March 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective treatments to fight this worldwide crisis. Artificial intelligence and bioinformatics analysis pipelines can assist with finding biomarkers, explanations, and cures. Artificial intelligence and machine learning methods provide powerful infrastructures for interpreting and understanding the available data. On the other hand, pathway enrichment analysis, as a dominant tool, could help researchers discover potential key targets present in biological pathways of host cells that are targeted by SARS-CoV-2. In this work, we propose a two-stage machine learning approach for pathway analysis. During the first stage, four informative gene sets that can represent important COVID-19 related pathways are selected. These “representative genes” are associated with the COVID-19 pathology. Then, two distinctive networks were constructed for COVID-19 related signaling and disease pathways. In the second stage, the pathways of each network are ranked with respect to some unsupervised scorning method based on our defined informative features. Finally, we present a comprehensive analysis of the top important pathways in both networks. Materials and implementations are available at: https://github.com/MahnazHabibi/Pathway.
  •  
6.
  • Taheri, Golnaz, et al. (författare)
  • Identification of essential genes associated with SARS-CoV-2 infection as potential drug target candidates with machine learning algorithms
  • 2023
  • Ingår i: Scientific Reports. - 2045-2322. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the fast discovery of effective treatments to fight this worldwide concern. Several genes associated with the SARS-CoV-2, which are essential for its functionality, pathogenesis, and survival, have been identified. These genes, which play crucial roles in SARS-CoV-2 infection, are considered potential therapeutic targets. Developing drugs against these essential genes to inhibit their regular functions could be a good approach for COVID-19 treatment. Artificial intelligence and machine learning methods provide powerful infrastructures for interpreting and understanding the available data and can assist in finding fast explanations and cures. We propose a method to highlight the essential genes that play crucial roles in SARS-CoV-2 pathogenesis. For this purpose, we define eleven informative topological and biological features for the biological and PPI networks constructed on gene sets that correspond to COVID-19. Then, we use three different unsupervised learning algorithms with different approaches to rank the important genes with respect to our defined informative features. Finally, we present a set of 18 important genes related to COVID-19. Materials and implementations are available at: https://github.com/MahnazHabibi/Gene_analysis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6
Typ av publikation
tidskriftsartikel (6)
Typ av innehåll
refereegranskat (6)
Författare/redaktör
Habibi, Mahnaz (6)
Taheri, Golnaz (6)
Aghdam, Rosa (2)
Lärosäte
Kungliga Tekniska Högskolan (5)
Stockholms universitet (2)
Språk
Engelska (6)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (5)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy