SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Habte T.) "

Sökning: WFRF:(Habte T.)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Baker, K., et al. (författare)
  • Performance of five pulse oximeters to detect hypoxaemia as an indicator of severe illness in children under five by frontline health workers in low resource settings- A prospective, multicentre, single-blinded, trial in Cambodia, Ethiopia, South Sudan, and Uganda
  • 2021
  • Ingår i: Eclinicalmedicine. - : Elsevier BV. - 2589-5370. ; 38
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Low blood oxygen saturation (SpO2), or hypoxaemia, is an indicator of severe illness in children. Pulse oximetry is a globally accepted, non-invasive method to identify hypoxaemia, but rarely available outside higher-level facilities in resource-constrained countries. This study aims to evaluate the performance of different types of pulse oximeters amongst frontline health workers in Cambodia, Ethiopia, South Sudan, and Uganda. Methods: Five pulse oximeters (POx) which passed laboratory testing, out of an initial 32 potential pulse oximeters, were evaluated by frontline health workers for performance, defined as agreement between the SpO2 measurements of the test device and the reference standard. The study protocol is registered with the Australia New Zealand Clinical Trials Registry (Ref: ACTRrn12615000348550). Findings: Two finger-tip pulse oximeters (Contec and Devon), two handheld pulse oximeters (Lifebox and Utech), and one phone pulse oximeter (Masimo) passed the laboratory testing. They were evaluated for performance on 1,313 children under five years old by 207 frontline health workers between February and May 2015. Phone and handheld pulse oximeters had greater overall agreement with the reference standard (56%; 95% CI 0.52 - 0.60 to 68%; 95% CI 0.65 - 0.71) than the finger-tip POx (31%; 95% CI 0.26 to 0.36 and 47%; 95% CI 0.42 to 0.52). Fingertip POx performance was substantially lower in the 0-2 month olds; having just 17% and 25% agreement. The finger-tip devices more often underreported SpO2 readings (mean difference -7.9%; 95%CI -8.6,-7.2 and -3.9%; 95%CI -4.4,-3.4), and therefore over diagnosed hypoxaemia in the children assessed. Interpretation: While the Masimo phone pulse oximeter performed best, all handheld POx with age-specific probes performed well in the hands of frontline health workers, further highlighting their suitability as a screening tool of severe illness. The poor performance of the fingertip POx suggests they should not be used in children under five by frontline health workers. It is essential that POx are performance tested on children in routine settings (in vivo), not only in laboratories or controlled settings (in vitro), before being introduced at scale.
  •  
4.
  • Baker, K., et al. (författare)
  • Performance of Four Respiratory Rate Counters to Support Community Health Workers to Detect the Symptoms of Pneumonia in Children in Low Resource Settings: A Prospective, Multicentre, Hospital-Based, Single-Blinded, Comparative Trial
  • 2019
  • Ingår i: EClinicalMedicine. - : Elsevier BV. - 2589-5370.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Pneumonia is one of the leading causes of death in children under-five globally. The current diagnostic criteria for pneumonia are based on increased respiratory rate (RR) or chest in-drawing in children with cough and/or difficulty breathing. Accurately counting RR is difficult for community health workers (CHWs). Current RR counting devices are frequently inadequate or unavailable. This study analysed the performance of improved RR timers for detection of pneumonia symptoms in low-resource settings. Methods: Four RR timers were evaluated on 454 children, aged from 0 to 59 months with cough and/or difficulty breathing, over three months, by CHWs in hospital settings in Cambodia, Ethiopia, South Sudan and Uganda. The devices were the Mark Two ARI timer (MK2 ARI), counting beads with ARI timer, Rrate Android phone and the Respirometer feature phone applications. Performance was evaluated for agreement with an automated RR reference standard (Masimo Root patient monitoring and connectivity platform with ISA CO2 capnography). This study is registered with ANZCTR [ACTRN12615000348550]. Findings: While most CHWs managed to achieve a RR count with the four devices, the agreement was low for all; the mean difference of RR measurements from the reference standard for the four devices ranged from 0.5 (95% C.I. − 2.2 to 1.2) for the respirometer to 5.5 (95% C.I. 3.2 to 7.8) for Rrate. Performance was consistently lower for young infants (0 to < 2 months) than for older children (2 to ≤ 59 months). Agreement of RR classification into fast and normal breathing was moderate across all four devices, with Cohen's Kappa statistics ranging from 0.41 (SE 0.04) to 0.49 (SE 0.05). Interpretation: None of the four devices evaluated performed well based on agreement with the reference standard. The ARI timer currently recommended for use by CHWs should only be replaced by more expensive, equally performing, automated RR devices when aspects such as usability and duration of the device significantly improve the patient-provider experience. Funding: Bill & Melinda Gates Foundation [ OPP1054367]. © 2019
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Baker, K., et al. (författare)
  • Automated respiratory rate counter to assess children for symptoms of pneumonia: Protocol for cross-sectional usability and acceptability studies in Ethiopia and Nepal
  • 2020
  • Ingår i: JMIR Research Protocols. - : JMIR Publications Inc.. - 1929-0748. ; 9:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Manually counting a child's respiratory rate (RR) for 60 seconds using an acute respiratory infection timer is the World Health Organization (WHO) recommended method for detecting fast breathing as a sign of pneumonia. However, counting the RR is challenging and misclassification of an observed rate is common, often leading to inappropriate treatment. To address this gap, the acute respiratory infection diagnostic aid (ARIDA) project was initiated in response to a call for better pneumonia diagnostic aids and aimed to identify and assess automated RR counters for classifying fast breathing pneumonia when used by front-line health workers in resource-limited community settings and health facilities. The Children's Automated Respiration Monitor (ChARM), an automated RR diagnostic aid using accelerometer technology developed by Koninklijke Philips NV, and the Rad-G, a multimodal RR diagnostic and pulse oximeter developed by Masimo, were the two devices tested in these studies conducted in the Southern Nations, Nationalities, and Peoples' Region in Ethiopia and in the Karnali region in Nepal. Objective: In these studies, we aimed to understand the usability of two new automated RR diagnostic aids for community health workers (CHWs; health extension workers [Ethiopia] and female community health volunteers [Nepal]) and their acceptability to CHWs in Ethiopia and Nepal, first-level health facility workers (FLHFWs) in Ethiopia only, and caregivers in both Ethiopia and Nepal. Methods: This was a prospective, cross-sectional study with a mixed methods design. CHWs and FLHFWs were trained to use both devices and provided with refresher training on all WHO requirements to assess fast breathing. Immediately after training, CHWs were observed using ARIDA on two children. Routine pneumonia case management consultations for children aged 5 years and younger and the device used for these consultations between the first and second consultations were recorded by CHWs in their patient log books. CHWs were observed a second time after 2 months. Semistructured interviews were also conducted with CHWs, FLHFWs, and caregivers. The proportion of consultations with children aged 5 years and younger where CHWs using an ARIDA and adhered to all WHO requirements to assess fast breathing and device manufacturer instructions for use after 2 months will be calculated. Qualitative data from semistructured interviews will be analyzed using a thematic framework approach. Results: The ARIDA project was funded in November 2015, and data collection was conducted between April and December 2018. Data analysis is currently under way and the first results are expected to be submitted for publication in 2020. Conclusions: This is the first time the usability and acceptability of automated RR counters in low-resource settings have been evaluated. Outcomes will be relevant for policy makers and are important for future research of this new class of diagnostic aids for the management of children with suspected pneumonia. © Kevin Nicholas Baker, Alice Maurel, Charlotte Ward, Dawit Getachew, Tedila Habte, Cindy McWhorter, Paul LaBarre, Jonas Karlström, Max Petzold, Karin Källander.
  •  
9.
  • Baker, K., et al. (författare)
  • Performance, Acceptability, and Usability of Respiratory Rate Timers and Pulse Oximeters When Used by Frontline Health Workers to Detect Symptoms of Pneumonia in Sub-Saharan Africa and Southeast Asia: Protocol for a Two-Phase, Multisite, Mixed-Methods Trial
  • 2018
  • Ingår i: JMIR Res Protoc. - : JMIR Publications Inc.. - 1929-0748. ; 7:10
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Pneumonia is one of the leading causes of death in children aged under 5 years in both sub-Saharan Africa and Southeast Asia. The current diagnostic criterion for pneumonia is based on the increased respiratory rate (RR) in children with cough or difficulty breathing. Low oxygen saturation, measured using pulse oximeters, is indicative of severe pneumonia. Health workers often find it difficult to accurately count the number of breaths, and the current RR counting devices are often difficult to use or unavailable. Nonetheless, improved counting devices and low-cost pulse oximeters are now available on the market. OBJECTIVE: The objective of our study was to identify the most accurate, usable, and acceptable devices for the diagnosis of pneumonia symptoms by community health workers and first-level health facility workers or frontline health workers in resource-poor settings. METHODS: This was a multicenter, prospective, two-stage, observational study to assess the performance and usability or acceptability of 9 potential diagnostic devices when used to detect symptoms of pneumonia in the hands of frontline health workers. Notably, 188 possible devices were ranked and scored, tested for suitability in a laboratory, and 5 pulse oximeters and 4 RR timers were evaluated for usability and performance by frontline health workers in hospital, health facility, and community settings. The performance was evaluated against 2 references over 3 months in Cambodia, Ethiopia, South Sudan, and Uganda. Furthermore, acceptability and usability was subsequently evaluated using both qualitative and quantitative methodologies in routine practice, over 3 months, in the 4 countries. RESULTS: This project was funded in 2014, and data collection has been completed. Data analysis is currently under way, and the first results are expected to be submitted for publication in 2018. CONCLUSIONS: This is the first large-scale evaluation of tools to detect symptoms of pneumonia at the community level. In addition, selecting an appropriate reference standard against which the devices were measured was challenging given the lack of existing standards and differences of opinions among experts. The findings from this study will help create a standardized and validated protocol for future studies and support further comparative testing of diagnostic devices in these settings. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry ACTRN12615000348550; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=367306&isReview= true (Archived by Website at http://www.webcitation.org/72OcvgBcf). INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/10191.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy